3 resultados para Analysis of teaching process

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The inherent complexity of statistical methods and clinical phenomena compel researchers with diverse domains of expertise to work in interdisciplinary teams, where none of them have a complete knowledge in their counterpart's field. As a result, knowledge exchange may often be characterized by miscommunication leading to misinterpretation, ultimately resulting in errors in research and even clinical practice. Though communication has a central role in interdisciplinary collaboration and since miscommunication can have a negative impact on research processes, to the best of our knowledge, no study has yet explored how data analysis specialists and clinical researchers communicate over time. METHODS/PRINCIPAL FINDINGS: We conducted qualitative analysis of encounters between clinical researchers and data analysis specialists (epidemiologist, clinical epidemiologist, and data mining specialist). These encounters were recorded and systematically analyzed using a grounded theory methodology for extraction of emerging themes, followed by data triangulation and analysis of negative cases for validation. A policy analysis was then performed using a system dynamics methodology looking for potential interventions to improve this process. Four major emerging themes were found. Definitions using lay language were frequently employed as a way to bridge the language gap between the specialties. Thought experiments presented a series of "what if" situations that helped clarify how the method or information from the other field would behave, if exposed to alternative situations, ultimately aiding in explaining their main objective. Metaphors and analogies were used to translate concepts across fields, from the unfamiliar to the familiar. Prolepsis was used to anticipate study outcomes, thus helping specialists understand the current context based on an understanding of their final goal. CONCLUSION/SIGNIFICANCE: The communication between clinical researchers and data analysis specialists presents multiple challenges that can lead to errors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use an information-theoretic method developed by Neifeld and Lee [J. Opt. Soc. Am. A 25, C31 (2008)] to analyze the performance of a slow-light system. Slow-light is realized in this system via stimulated Brillouin scattering in a 2 km-long, room-temperature, highly nonlinear fiber pumped by a laser whose spectrum is tailored and broadened to 5 GHz. We compute the information throughput (IT), which quantifies the fraction of information transferred from the source to the receiver and the information delay (ID), which quantifies the delay of a data stream at which the information transfer is largest, for a range of experimental parameters. We also measure the eye-opening (EO) and signal-to-noise ratio (SNR) of the transmitted data stream and find that they scale in a similar fashion to the information-theoretic method. Our experimental findings are compared to a model of the slow-light system that accounts for all pertinent noise sources in the system as well as data-pulse distortion due to the filtering effect of the SBS process. The agreement between our observations and the predictions of our model is very good. Furthermore, we compare measurements of the IT for an optimal flattop gain profile and for a Gaussian-shaped gain profile. For a given pump-beam power, we find that the optimal profile gives a 36% larger ID and somewhat higher IT compared to the Gaussian profile. Specifically, the optimal (Gaussian) profile produces a fractional slow-light ID of 0.94 (0.69) and an IT of 0.86 (0.86) at a pump-beam power of 450 mW and a data rate of 2.5 Gbps. Thus, the optimal profile better utilizes the available pump-beam power, which is often a valuable resource in a system design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray crystallography is the predominant method for obtaining atomic-scale information about biological macromolecules. Despite the success of the technique, obtaining well diffracting crystals still critically limits going from protein to structure. In practice, the crystallization process proceeds through knowledge-informed empiricism. Better physico-chemical understanding remains elusive because of the large number of variables involved, hence little guidance is available to systematically identify solution conditions that promote crystallization. To help determine relationships between macromolecular properties and their crystallization propensity, we have trained statistical models on samples for 182 proteins supplied by the Northeast Structural Genomics consortium. Gaussian processes, which capture trends beyond the reach of linear statistical models, distinguish between two main physico-chemical mechanisms driving crystallization. One is characterized by low levels of side chain entropy and has been extensively reported in the literature. The other identifies specific electrostatic interactions not previously described in the crystallization context. Because evidence for two distinct mechanisms can be gleaned both from crystal contacts and from solution conditions leading to successful crystallization, the model offers future avenues for optimizing crystallization screens based on partial structural information. The availability of crystallization data coupled with structural outcomes analyzed through state-of-the-art statistical models may thus guide macromolecular crystallization toward a more rational basis.