10 resultados para Allogeneic hematopoietic stem cell transplantation in Fanconi anemia

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Cutaneous sclerosis occurs in 20% of patients with chronic graft-versus-host disease (GVHD) and can compromise mobility and quality of life. EXPERIMENTAL DESIGN: We conducted a prospective, multicenter, randomized, two-arm phase II crossover trial of imatinib (200 mg daily) or rituximab (375 mg/m(2) i.v. weekly × 4 doses, repeatable after 3 months) for treatment of cutaneous sclerosis diagnosed within 18 months (NCT01309997). The primary endpoint was significant clinical response (SCR) at 6 months, defined as quantitative improvement in skin sclerosis or joint range of motion. Treatment success was defined as SCR at 6 months without crossover, recurrent malignancy or death. Secondary endpoints included changes of B-cell profiles in blood (BAFF levels and cellular subsets), patient-reported outcomes, and histopathology between responders and nonresponders with each therapy. RESULTS: SCR was observed in 9 of 35 [26%; 95% confidence interval (CI); 13%-43%] participants randomized to imatinib and 10 of 37 (27%; 95% CI, 14%-44%) randomized to rituximab. Six (17%; 95% CI, 7%-34%) patients in the imatinib arm and 5 (14%; 95% CI, 5%-29%) in the rituximab arm had treatment success. Higher percentages of activated B cells (CD27(+)) were seen at enrollment in rituximab-treated patients who had treatment success (P = 0.01), but not in imatinib-treated patients. CONCLUSIONS: These results support the need for more effective therapies for cutaneous sclerosis and suggest that activated B cells define a subgroup of patients with cutaneous sclerosis who are more likely to respond to rituximab.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hematopoietic stem cell transplantation (HSCT) is the only curative treatment for most children with osteopetrosis (OP). Timing of HSCT is critical; therefore, umbilical cord blood transplantation (UCBT) is an attractive option. We analyzed outcomes after UCBT in 51 OP children. Median age at UCBT was 6 months. Seventy-seven percent of the cord blood grafts had 0 or 1 HLA disparity with the recipient. Conditioning regimen was myeloablative (mostly busulfan-based in 84% and treosulfan-based in 10%). Antithymocyte globulin was given to 90% of patients. Median number of total nucleated and CD34(+) cells infused was 14 × 10(7)/kg and 3.4 × 10(5)/kg, respectively. Median follow-up for survivors was 74 months. Cumulative incidence (CI) of neutrophil recovery was 67% with a median time to recovery of 23 days; 33% of patients had graft failure, 81% of engrafted patients had full donor engraftment, and 19% had mixed donor chimerism. Day 100 CI of acute graft-versus-host disease (grades II to IV) was 31% and 6-year CI of chronic graft-versus-host disease was 21%. Mechanical ventilation was required in 28%, and veno-occlusive disease was diagnosed in 16% of cases. Six-year overall survival rate was 46%. Comparative studies with other alternative donors should be performed to evaluate whether UCBT remains a valid alternative for children with OP without an HLA-matched donor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stem cell transplantation holds great promise for the treatment of myocardial infarction injury. We recently described the embryonic stem cell-derived cardiac progenitor cells (CPCs) capable of differentiating into cardiomyocytes, vascular endothelium, and smooth muscle. In this study, we hypothesized that transplanted CPCs will preserve function of the infarcted heart by participating in both muscle replacement and neovascularization. Differentiated CPCs formed functional electromechanical junctions with cardiomyocytes in vitro and conducted action potentials over cm-scale distances. When transplanted into infarcted mouse hearts, CPCs engrafted long-term in the infarct zone and surrounding myocardium without causing teratomas or arrhythmias. The grafted cells differentiated into cross-striated cardiomyocytes forming gap junctions with the host cells, while also contributing to neovascularization. Serial echocardiography and pressure-volume catheterization demonstrated attenuated ventricular dilatation and preserved left ventricular fractional shortening, systolic and diastolic function. Our results demonstrate that CPCs can engraft, differentiate, and preserve the functional output of the infarcted heart.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Banked, unrelated umbilical cord blood provides access to hematopoietic stem cell transplantation for patients lacking matched bone marrow donors, yet 10% to 15% of patients experience graft failure or delayed engraftment. This may be due, at least in part, to inadequate potency of the selected cord blood unit (CBU). CBU potency is typically assessed before cryopreservation, neglecting changes in potency occurring during freezing and thawing. Colony-forming units (CFUs) have been previously shown to predict CBU potency, defined as the ability to engraft in patients by day 42 posttransplant. However, the CFU assay is difficult to standardize and requires 2 weeks to perform. Consequently, we developed a rapid multiparameter flow cytometric CBU potency assay that enumerates cells expressing high levels of the enzyme aldehyde dehydrogenase (ALDH bright [ALDH(br)]), along with viable CD45(+) or CD34(+) cell content. These measurements are made on a segment that was attached to a cryopreserved CBU. We validated the assay with prespecified criteria testing accuracy, specificity, repeatability, intermediate precision, and linearity. We then prospectively examined the correlations among ALDH(br), CD34(+), and CFU content of 3908 segments over a 5-year period. ALDH(br) (r = 0.78; 95% confidence interval [CI], 0.76-0.79), but not CD34(+) (r = 0.25; 95% CI, 0.22-0.28), was strongly correlated with CFU content as well as ALDH(br) content of the CBU. These results suggest that the ALDH(br) segment assay (based on unit characteristics measured before release) is a reliable assessment of potency that allows rapid selection and release of CBUs from the cord blood bank to the transplant center for transplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In cultured cancer cells the E3 ubiquitin ligase Rad18 activates Trans-Lesion Synthesis (TLS) and the Fanconi Anemia (FA) pathway. However, physiological roles of Rad18 in DNA damage tolerance and carcinogenesis are unknown and were investigated here. Primary hematopoietic stem and progenitor cells (HSPC) co-expressed RAD18 and FANCD2 proteins, potentially consistent with a role for Rad18 in FA pathway function during hematopoiesis. However, hematopoietic defects typically associated with fanc-deficiency (decreased HSPC numbers, reduced engraftment potential of HSPC, and Mitomycin C (MMC) -sensitive hematopoiesis), were absent in Rad18(-/-) mice. Moreover, primary Rad18(-/-) mouse embryonic fibroblasts (MEF) retained robust Fancd2 mono-ubiquitination following MMC treatment. Therefore, Rad18 is dispensable for FA pathway activation in untransformed cells and the Rad18 and FA pathways are separable in hematopoietic cells. In contrast with responses to crosslinking agents, Rad18(-/-) HSPC were sensitive to in vivo treatment with the myelosuppressive agent 7,12 Dimethylbenz[a]anthracene (DMBA). Rad18-deficient fibroblasts aberrantly accumulated DNA damage markers after DMBA treatment. Moreover, in vivo DMBA treatment led to increased incidence of B cell malignancy in Rad18(-/-) mice. These results identify novel hematopoietic functions for Rad18 and provide the first demonstration that Rad18 confers DNA damage tolerance and tumor-suppression in a physiological setting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The roles of long non-coding RNAs (lncRNAs) in regulating cancer and stem cells are being increasingly appreciated. Its diverse mechanisms provide the regulatory network with a bigger repertoire to increase complexity. Here we report a novel LncRNA, Lnc34a, that is enriched in colon cancer stem cells (CCSCs) and initiates asymmetric division by directly targeting the microRNA miR-34a to cause its spatial imbalance. Lnc34a recruits Dnmt3a via PHB2 and HDAC1 to methylate and deacetylate the miR-34a promoter simultaneously, hence epigenetically silencing miR-34a expression independent of its upstream regulator, p53. Lnc34a levels affect CCSC self-renewal and colorectal cancer (CRC) growth in xenograft models. Lnc34a is upregulated in late-stage CRCs, contributing to epigenetic miR-34a silencing and CRC proliferation. The fact that lncRNA targets microRNA highlights the regulatory complexity of non-coding RNAs (ncRNAs), which occupy the bulk of the genome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Sickle cell disease (SCD) is a debilitating genetic blood disorder that seriously impacts the quality of life of affected individuals and their families. With 85% of cases occurring in sub-Saharan Africa, it is essential to identify the barriers and facilitators of optimal outcomes for people with SCD in this setting. This study focuses on understanding the relationship between support systems and disease outcomes for SCD patients and their families in Cameroon and South Africa.

Methods: This mixed-methods study utilizes surveys and semi-structured interviews to assess the experiences of 29 SCD patients and 28 caregivers of people with SCD across three cities in two African countries: Cape Town, South Africa; Yaoundé, Cameroon; and Limbe, Cameroon.

Results: Patients in Cameroon had less treatment options, a higher frequency of pain crises, and a higher incidence of malaria than patients in South Africa. Social support networks in Cameroon consisted of both family and friends and provided emotional, financial, and physical assistance during pain crises and hospital admissions. In South Africa, patients relied on a strong medical support system and social support primarily from close family members; they were also diagnosed later in life than those in Cameroon.

Conclusions: The strength of medical support systems influences the reliance of SCD patients and their caregivers on social support systems. In Cameroon the health care system does not adequately address all factors of SCD treatment and social networks of family and friends are used to complement the care received. In South Africa, strong medical and social support systems positively affect SCD disease burden for patients and their caregivers. SCD awareness campaigns are necessary to reduce the incidence of SCD and create stronger social support networks through increased community understanding and decreased stigma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tissue-engineered blood vessels (TEBV) can serve as vascular grafts and may also play an important role in the development of organs-on-a-chip. Most TEBV construction involves scaffolding with biomaterials such as collagen gel or electrospun fibrous mesh. Hypothesizing that a scaffold-free TEBV may be advantageous, we constructed a tubular structure (1 mm i.d.) from aligned human mesenchymal cell sheets (hMSC) as the wall and human endothelial progenitor cell (hEPC) coating as the lumen. The burst pressure of the scaffold-free TEBV was above 200 mmHg after three weeks of sequential culture in a rotating wall bioreactor and perfusion at 6.8 dynes/cm(2). The interwoven organization of the cell layers and extensive extracellular matrix (ECM) formation of the hMSC-based TEBV resembled that of native blood vessels. The TEBV exhibited flow-mediated vasodilation, vasoconstriction after exposure to 1 μM phenylephrine and released nitric oxide in a manner similar to that of porcine femoral vein. HL-60 cells attached to the TEBV lumen after TNF-α activation to suggest a functional endothelium. This study demonstrates the potential of a hEPC endothelialized hMSC-based TEBV for drug screening.