36 resultados para Allelopathic stress
em Duke University
Resumo:
Osmotic stress is a potent regulator of the normal function of cells that are exposed to osmotically active environments under physiologic or pathologic conditions. The ability of cells to alter gene expression and metabolic activity in response to changes in the osmotic environment provides an additional regulatory mechanism for a diverse array of tissues and organs in the human body. In addition to the activation of various osmotically- or volume-activated ion channels, osmotic stress may also act on the genome via a direct biophysical pathway. Changes in extracellular osmolality alter cell volume, and therefore, the concentration of intracellular macromolecules. In turn, intracellular macromolecule concentration is a key physical parameter affecting the spatial organization and pressurization of the nucleus. Hyper-osmotic stress shrinks the nucleus and causes it to assume a convoluted shape, whereas hypo-osmotic stress swells the nucleus to a size that is limited by stretch of the nuclear lamina and induces a smooth, round shape of the nucleus. These behaviors are consistent with a model of the nucleus as a charged core/shell structure pressurized by uneven partition of macromolecules between the nucleoplasm and the cytoplasm. These osmotically-induced alterations in the internal structure and arrangement of chromatin, as well as potential changes in the nuclear membrane and pores are hypothesized to influence gene transcription and/or nucleocytoplasmic transport. A further understanding of the biophysical and biochemical mechanisms involved in these processes would have important ramifications for a range of fields including differentiation, migration, mechanotransduction, DNA repair, and tumorigenesis.
Resumo:
Oxidative stress is a deleterious stressor associated with a plethora of disease and aging manifestations, including neurodegenerative disorders, yet very few factors and mechanisms promoting the neuroprotection of photoreceptor and other neurons against oxidative stress are known. Insufficiency of RAN-binding protein-2 (RANBP2), a large, mosaic protein with pleiotropic functions, suppresses apoptosis of photoreceptor neurons upon aging and light-elicited oxidative stress, and promotes age-dependent tumorigenesis by mechanisms that are not well understood. Here we show that, by downregulating selective partners of RANBP2, such as RAN GTPase, UBC9 and ErbB-2 (HER2; Neu), and blunting the upregulation of a set of orphan nuclear receptors and the light-dependent accumulation of ubiquitylated substrates, light-elicited oxidative stress and Ranbp2 haploinsufficiency have a selective effect on protein homeostasis in the retina. Among the nuclear orphan receptors affected by insufficiency of RANBP2, we identified an isoform of COUP-TFI (Nr2f1) as the only receptor stably co-associating in vivo with RANBP2 and distinct isoforms of UBC9. Strikingly, most changes in proteostasis caused by insufficiency of RANBP2 in the retina are not observed in the supporting tissue, the retinal pigment epithelium (RPE). Instead, insufficiency of RANBP2 in the RPE prominently suppresses the light-dependent accumulation of lipophilic deposits, and it has divergent effects on the accumulation of free cholesterol and free fatty acids despite the genotype-independent increase of light-elicited oxidative stress in this tissue. Thus, the data indicate that insufficiency of RANBP2 results in the cell-type-dependent downregulation of protein and lipid homeostasis, acting on functionally interconnected pathways in response to oxidative stress. These results provide a rationale for the neuroprotection from light damage of photosensory neurons by RANBP2 insufficiency and for the identification of novel therapeutic targets and approaches promoting neuroprotection.
Resumo:
We study the response of dry granular materials to external stress using experiment, simulation, and theory. We derive a Ginzburg-Landau functional that enforces mechanical stability and positivity of contact forces. In this framework, the elastic moduli depend only on the applied stress. A combination of this feature and the positivity constraint leads to stress correlations whose shape and magnitude are extremely sensitive to the nature of the applied stress. The predictions from the theory describe the stress correlations for both simulations and experiments semiquantitatively. © 2009 The American Physical Society.
Resumo:
Extraintestinal pathogenic Escherichia coli (ExPEC) reside in the enteric tract as a commensal reservoir, but can transition to a pathogenic state by invading normally sterile niches, establishing infection and disseminating to invasive sites like the bloodstream. Macrophages are required for ExPEC dissemination, suggesting the pathogen has developed mechanisms to persist within professional phagocytes. Here, we report that FimX, an ExPEC-associated DNA invertase that regulates the major virulence factor type 1 pili (T1P), is also an epigenetic regulator of a LuxR-like response regulator HyxR. FimX regulated hyxR expression through bidirectional phase inversion of its promoter region at sites different from the type 1 pili promoter and independent of integration host factor (IHF). In vitro, transition from high to low HyxR expression produced enhanced tolerance of reactive nitrogen intermediates (RNIs), primarily through de-repression of hmpA, encoding a nitric oxide-detoxifying flavohaemoglobin. However, in the macrophage, HyxR produced large effects on intracellular survival in the presence and absence of RNI and independent of Hmp. Collectively, we have shown that the ability of ExPEC to survive in macrophages is contingent upon the proper transition from high to low HyxR expression through epigenetic regulatory control by FimX.
Resumo:
Previously we have shown that a functional nonsynonymous single nucleotide polymorphism (rs6318) of the 5HTR2C gene located on the X-chromosome is associated with hypothalamic-pituitary-adrenal axis response to a stress recall task, and with endophenotypes associated with cardiovascular disease (CVD). These findings suggest that individuals carrying the rs6318 Ser23 C allele will be at higher risk for CVD compared to Cys23 G allele carriers. The present study examined allelic variation in rs6318 as a predictor of coronary artery disease (CAD) severity and a composite endpoint of all-cause mortality or myocardial infarction (MI) among Caucasian participants consecutively recruited through the cardiac catheterization laboratory at Duke University Hospital (Durham, NC) as part of the CATHGEN biorepository. Study population consisted of 6,126 Caucasian participants (4,036 [65.9%] males and 2,090 [34.1%] females). A total of 1,769 events occurred (1,544 deaths and 225 MIs; median follow-up time = 5.3 years, interquartile range = 3.3-8.2). Unadjusted Cox time-to-event regression models showed, compared to Cys23 G carriers, males hemizygous for Ser23 C and females homozygous for Ser23C were at increased risk for the composite endpoint of all-cause death or MI: Hazard Ratio (HR) = 1.47, 95% confidence interval (CI) = 1.17, 1.84, p = .0008. Adjusting for age, rs6318 genotype was not related to body mass index, diabetes, hypertension, dyslipidemia, smoking history, number of diseased coronary arteries, or left ventricular ejection fraction in either males or females. After adjustment for these covariates the estimate for the two Ser23 C groups was modestly attenuated, but remained statistically significant: HR = 1.38, 95% CI = 1.10, 1.73, p = .005. These findings suggest that this functional polymorphism of the 5HTR2C gene is associated with increased risk for CVD mortality and morbidity, but this association is apparently not explained by the association of rs6318 with traditional risk factors or conventional markers of atherosclerotic disease.
Resumo:
Bacterial outer membrane vesicles (OMVs) are spherical buds of the outer membrane (OM) containing periplasmic lumenal components. OMVs have been demonstrated to play a critical part in the transmission of virulence factors, immunologically active compounds, and bacterial survival, however vesiculation also appears to be a ubiquitous physiological process for Gram-negative bacteria. Despite their characterized biological roles, especially for pathogens, very little is known about their importance for the originating organism as well as regulation and mechanism of production. Only when we have established their biogenesis can we fully uncover their roles in pathogenesis and bacterial physiology. The overall goal of this research was to characterize bacterial mutants which display altered vesiculation phenotypes using genetic and biochemical techniques, and thereby begin to elucidate the mechanism of vesicle production and regulation. One part of this work elucidated a synthetic genetic growth defect for a strain with reduced OMV production (ΔnlpA, inner membrane lipoprotein with a minor role in methionine transport) and envelope stress (ΔdegP, dual function periplasmic chaperone/ protease responsible for managing proteinaceous waste). This research showed that the growth defect of ΔnlpAΔdegP correlated with reduced OMV production with respect to the hyprevesiculator ΔdegP and the accumulation of protein in the periplasm and DegP substrates in the lumen of OMVs. We further demonstrated that OMVs do not solely act as a stress response pathway to rid the periplasm of otherwise damaging misfolded protein but also of accumulated peptidoglycan (PG) fragments and lipopolysaccharide (LPS), elucidating OMVs as a general stress response pathway critical for bacterial well-being. The second part of this work, focused on the role of PG structure, turnover and covalent crosslinks to the OM in vesiculation. We established a direct link between PG degradation and vesiculation: Mutations in the OM lipoprotein nlpI had been previously established as a very strong hypervesiculation phenotype. In the literature NlpI had been associated with another OM lipoprotein, Spr that was recently identified as a PG hydrolase. The data presented here suggest that NlpI acts as a negative regulator of Spr and that the ΔnlpI hypervesiculation phenotype is a result of rampantly degraded PG by Spr. Additionally, we found that changes in PG structure and turnover correlate with altered vesiculation levels, as well as non-canonical D-amino acids, which are secreted by numerous bacteria on the onset of stationary phase, being a natural factor to increase OMV production. Furthermore, we discovered an inverse relationship between the concentration of Lpp-mediated, covalent crosslinks and the level of OMV production under conditions of modulated PG metabolism and structure. In contrast, situations that lead to periplasmic accumulation (protein, PG fragments, and LPS) and consequent hypervesiculation the overall OM-PG crosslink concentration appears to be unchanged. Form this work, we conclude that multiple pathways lead to OMV production: Lpp concentration-dependent and bulk driven, Lpp concentration-independent.
Resumo:
Programmed death is often associated with a bacterial stress response. This behavior appears paradoxical, as it offers no benefit to the individual. This paradox can be explained if the death is 'altruistic': the killing of some cells can benefit the survivors through release of 'public goods'. However, the conditions where bacterial programmed death becomes advantageous have not been unambiguously demonstrated experimentally. Here, we determined such conditions by engineering tunable, stress-induced altruistic death in the bacterium Escherichia coli. Using a mathematical model, we predicted the existence of an optimal programmed death rate that maximizes population growth under stress. We further predicted that altruistic death could generate the 'Eagle effect', a counter-intuitive phenomenon where bacteria appear to grow better when treated with higher antibiotic concentrations. In support of these modeling insights, we experimentally demonstrated both the optimality in programmed death rate and the Eagle effect using our engineered system. Our findings fill a critical conceptual gap in the analysis of the evolution of bacterial programmed death, and have implications for a design of antibiotic treatment.
Resumo:
We all experience a host of common life stressors such as the death of a family member, medical illness, and financial uncertainty. While most of us are resilient to such stressors, continuing to function normally, for a subset of individuals, experiencing these stressors increases the likelihood of developing treatment-resistant, chronic psychological problems, including depression and anxiety. It is thus paramount to identify predictive markers of risk, particularly those reflecting fundamental biological processes that can be targets for intervention and prevention. Using data from a longitudinal study of 340 healthy young adults, we demonstrate that individual differences in threat-related amygdala reactivity predict psychological vulnerability to life stress occurring as much as 1 to 4 years later. These results highlight a readily assayed biomarker, threat-related amygdala reactivity, which predicts psychological vulnerability to commonly experienced stressors and represents a discrete target for intervention and prevention.
Resumo:
Posttraumatic stress disorder (PTSD) affects the functional recruitment and connectivity between neural regions during autobiographical memory (AM) retrieval that overlap with default and control networks. Whether such univariate changes relate to potential differences in the contributions of the large-scale neural networks supporting cognition in PTSD is unknown. In the present functional MRI study, we employed independent-component analysis to examine the influence of the engagement of neural networks during the recall of personal memories in a PTSD group (15 participants) as compared to non-trauma-exposed healthy controls (14 participants). We found that the PTSD group recruited similar neural networks when compared to the controls during AM recall, including default-network subsystems and control networks, but group differences emerged in the spatial and temporal characteristics of these networks. First, we found spatial differences in the contributions of the anterior and posterior midline across the networks, and of the amygdala in particular, for the medial temporal subsystem of the default network. Second, we found temporal differences within the medial prefrontal subsystem of the default network, with less temporal coupling of this network during AM retrieval in PTSD relative to controls. These findings suggest that the spatial and temporal characteristics of the default and control networks potentially differ in a PTSD group versus healthy controls and contribute to altered recall of personal memory.
Resumo:
Reactions to stressful negative events have long been studied using approaches based on either the narrative interpretation of the event or the traits of the individual. Here, we integrate these 2 approaches by using individual-differences measures of both the narrative interpretation of the stressful event as central to one's life and the personality characteristic of negative affectivity. We show that they each have independent contributions to stress reactions and that high levels on both produce greater than additive effects. The effects on posttraumatic stress symptoms are substantial for both undergraduates (Study 1, n = 2,296; Study 3, n = 488) and veterans (Study 2, n = 104), with mean levels for participants low on both measures near floor on posttraumatic stress symptoms and those high on both measures scoring at or above diagnostic thresholds. Study 3 included 3 measures of narrative centrality and 3 of negative affectivity to demonstrate that the effects were not limited to a single measure. In Study 4 (n = 987), measures associated with symptoms of posttraumatic stress correlated substantially with either measures of narrative centrality or measures of negative affectivity. The concepts of narrative centrality and negative affectivity and the results are consistent with findings from clinical populations using similar measures and with current approaches to therapy. In broad nonclinical populations, such as those used here, the results suggest that we might be able to substantially increase our ability to account for the severity of stress response by including both concepts.
Resumo:
In the study reported here, we examined posttraumatic stress disorder (PTSD) symptoms in 746 Danish soldiers measured on five occasions before, during, and after deployment to Afghanistan. Using latent class growth analysis, we identified six trajectories of change in PTSD symptoms. Two resilient trajectories had low levels across all five times, and a new-onset trajectory started low and showed a marked increase of PTSD symptoms. Three temporary-benefit trajectories, not previously described in the literature, showed decreases in PTSD symptoms during (or immediately after) deployment, followed by increases after return from deployment. Predeployment emotional problems and predeployment traumas, especially childhood adversities, were predictors for inclusion in the nonresilient trajectories, whereas deployment-related stress was not. These findings challenge standard views of PTSD in two ways. First, they show that factors other than immediately preceding stressors are critical for PTSD development, with childhood adversities being central. Second, they demonstrate that the development of PTSD symptoms shows heterogeneity, which indicates the need for multiple measurements to understand PTSD and identify people in need of treatment.
Resumo:
To provide the three-way comparisons needed to test existing theories, we compared (1) most-stressful memories to other memories and (2) involuntary to voluntary memories (3) in 75 community dwelling adults with and 42 without a current diagnosis of posttraumatic stress disorder (PTSD). Each rated their three most-stressful, three most-positive, seven most-important and 15 word-cued autobiographical memories, and completed tests of personality and mood. Involuntary memories were then recorded and rated as they occurred for 2 weeks. Standard mechanisms of cognition and affect applied to extreme events accounted for the properties of stressful memories. Involuntary memories had greater emotional intensity than voluntary memories, but were not more frequently related to traumatic events. The emotional intensity, rehearsal, and centrality to the life story of both voluntary and involuntary memories, rather than incoherence of voluntary traumatic memories and enhanced availability of involuntary traumatic memories, were the properties of autobiographical memories associated with PTSD.
Resumo:
Post-traumatic stress disorder (PTSD) affects regions that support autobiographical memory (AM) retrieval, such as the hippocampus, amygdala and ventral medial prefrontal cortex (PFC). However, it is not well understood how PTSD may impact the neural mechanisms of memory retrieval for the personal past. We used a generic cue method combined with parametric modulation analysis and functional MRI (fMRI) to investigate the neural mechanisms affected by PTSD symptoms during the retrieval of a large sample of emotionally intense AMs. There were three main results. First, the PTSD group showed greater recruitment of the amygdala/hippocampus during the construction of negative versus positive emotionally intense AMs, when compared to controls. Second, across both the construction and elaboration phases of retrieval the PTSD group showed greater recruitment of the ventral medial PFC for negatively intense memories, but less recruitment for positively intense memories. Third, the PTSD group showed greater functional coupling between the ventral medial PFC and the amygdala for negatively intense memories, but less coupling for positively intense memories. In sum, the fMRI data suggest that there was greater recruitment and coupling of emotional brain regions during the retrieval of negatively intense AMs in the PTSD group when compared to controls.
Resumo:
Participants with posttraumatic stress disorder (PTSD) and participants with a trauma but without PTSD wrote narratives of their trauma and, for comparison, of the most-important and the happiest events that occurred within a year of their trauma. They then rated these three events on coherence. Based on participants' self-ratings and on naïve-observer scorings of the participants' narratives, memories of traumas were not more incoherent than the comparison memories in participants in general or in participants with PTSD. This study comprehensively assesses narrative coherence using a full two (PTSD or not) by two (traumatic event or not) design. The results are counter to most prevalent theoretical views of memory for trauma.