3 resultados para Agricultural and forest meteorology

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

New burned area datasets and top-down constraints from atmospheric concentration measurements of pyrogenic gases have decreased the large uncertainty in fire emissions estimates. However, significant gaps remain in our understanding of the contribution of deforestation, savanna, forest, agricultural waste, and peat fires to total global fire emissions. Here we used a revised version of the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model and improved satellite-derived estimates of area burned, fire activity, and plant productivity to calculate fire emissions for the 1997-2009 period on a 0.5° spatial resolution with a monthly time step. For November 2000 onwards, estimates were based on burned area, active fire detections, and plant productivity from the MODerate resolution Imaging Spectroradiometer (MODIS) sensor. For the partitioning we focused on the MODIS era. We used maps of burned area derived from the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS) and Along-Track Scanning Radiometer (ATSR) active fire data prior to MODIS (1997-2000) and estimates of plant productivity derived from Advanced Very High Resolution Radiometer (AVHRR) observations during the same period. Average global fire carbon emissions according to this version 3 of the Global Fire Emissions Database (GFED3) were 2.0 PgC year-1 with significant interannual variability during 1997-2001 (2.8 Pg Cyear-1 in 1998 and 1.6 PgC year-1 in 2001). Globally, emissions during 2002-2007 were rela-tively constant (around 2.1 Pg C year-1) before declining in 2008 (1.7 Pg Cyear-1) and 2009 (1.5 PgC year-1) partly due to lower deforestation fire emissions in South America and tropical Asia. On a regional basis, emissions were highly variable during 2002-2007 (e.g., boreal Asia, South America, and Indonesia), but these regional differences canceled out at a global level. During the MODIS era (2001-2009), most carbon emissions were from fires in grasslands and savannas (44%) with smaller contributions from tropical deforestation and degradation fires (20%), woodland fires (mostly confined to the tropics, 16%), forest fires (mostly in the extratropics, 15%), agricultural waste burning (3%), and tropical peat fires (3%). The contribution from agricultural waste fires was likely a lower bound because our approach for measuring burned area could not detect all of these relatively small fires. Total carbon emissions were on average 13% lower than in our previous (GFED2) work. For reduced trace gases such as CO and CH4, deforestation, degradation, and peat fires were more important contributors because of higher emissions of reduced trace gases per unit carbon combusted compared to savanna fires. Carbon emissions from tropical deforestation, degradation, and peatland fires were on average 0.5 PgC year-1. The carbon emissions from these fires may not be balanced by regrowth following fire. Our results provide the first global assessment of the contribution of different sources to total global fire emissions for the past decade, and supply the community with an improved 13-year fire emissions time series. © 2010 Author(s).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The possibility of encouraging the growth of forests as a means of sequestering carbon dioxide has received considerable attention, partly because of evidence that this can be a relatively inexpensive means of combating climate change. But how sensitive are such estimates to specific conditions? We examine the sensitivity of carbon sequestration costs to changes in critical factors, including the nature of management and deforestation regimes, silvicultural species, relative prices, and discount rates. (C) 2000 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently, the sole strategy for managing food hypersensitivity involves strict avoidance of the trigger. Several alternate strategies for the treatment of food allergies are currently under study. Also being explored is the process of eliminating allergenic proteins from crop plants. Legumes are a rich source of protein and are an essential component of the human diet. Unfortunately, legumes, including soybean and peanut, are also common sources of food allergens. Four protein families and superfamilies account for the majority of legume allergens, which include storage proteins of seeds (cupins and prolamins), profilins, and the larger group of pathogenesis-related proteins. Two strategies have been used to produce hypoallergenic legume crops: (1) germplasm lines are screened for the absence or reduced content of specific allergenic proteins and (2) genetic transformation is used to silence native genes encoding allergenic proteins. Both approaches have been successful in producing cultivars of soybeans and peanuts with reduced allergenic proteins. However, it is unknown whether the cultivars are actually hypoallergenic to those with sensitivity. This review describes efforts to produce hypoallergenic cultivars of soybean and peanut and discusses the challenges that need to be overcome before such products could be available in the marketplace.