3 resultados para Agile iterative development
em Duke University
Resumo:
BACKGROUND: Web-based decision aids are increasingly important in medical research and clinical care. However, few have been studied in an intensive care unit setting. The objectives of this study were to develop a Web-based decision aid for family members of patients receiving prolonged mechanical ventilation and to evaluate its usability and acceptability. METHODS: Using an iterative process involving 48 critical illness survivors, family surrogate decision makers, and intensivists, we developed a Web-based decision aid addressing goals of care preferences for surrogate decision makers of patients with prolonged mechanical ventilation that could be either administered by study staff or completed independently by family members (Development Phase). After piloting the decision aid among 13 surrogate decision makers and seven intensivists, we assessed the decision aid's usability in the Evaluation Phase among a cohort of 30 surrogate decision makers using the Systems Usability Scale (SUS). Acceptability was assessed using measures of satisfaction and preference for electronic Collaborative Decision Support (eCODES) versus the original printed decision aid. RESULTS: The final decision aid, termed 'electronic Collaborative Decision Support', provides a framework for shared decision making, elicits relevant values and preferences, incorporates clinical data to personalize prognostic estimates generated from the ProVent prediction model, generates a printable document summarizing the user's interaction with the decision aid, and can digitally archive each user session. Usability was excellent (mean SUS, 80 ± 10) overall, but lower among those 56 years and older (73 ± 7) versus those who were younger (84 ± 9); p = 0.03. A total of 93% of users reported a preference for electronic versus printed versions. CONCLUSIONS: The Web-based decision aid for ICU surrogate decision makers can facilitate highly individualized information sharing with excellent usability and acceptability. Decision aids that employ an electronic format such as eCODES represent a strategy that could enhance patient-clinician collaboration and decision making quality in intensive care.
Resumo:
BACKGROUND/AIMS: The obesity epidemic has spread to young adults, and obesity is a significant risk factor for cardiovascular disease. The prominence and increasing functionality of mobile phones may provide an opportunity to deliver longitudinal and scalable weight management interventions in young adults. The aim of this article is to describe the design and development of the intervention tested in the Cell Phone Intervention for You study and to highlight the importance of adaptive intervention design that made it possible. The Cell Phone Intervention for You study was a National Heart, Lung, and Blood Institute-sponsored, controlled, 24-month randomized clinical trial comparing two active interventions to a usual-care control group. Participants were 365 overweight or obese (body mass index≥25 kg/m2) young adults. METHODS: Both active interventions were designed based on social cognitive theory and incorporated techniques for behavioral self-management and motivational enhancement. Initial intervention development occurred during a 1-year formative phase utilizing focus groups and iterative, participatory design. During the intervention testing, adaptive intervention design, where an intervention is updated or extended throughout a trial while assuring the delivery of exactly the same intervention to each cohort, was employed. The adaptive intervention design strategy distributed technical work and allowed introduction of novel components in phases intended to help promote and sustain participant engagement. Adaptive intervention design was made possible by exploiting the mobile phone's remote data capabilities so that adoption of particular application components could be continuously monitored and components subsequently added or updated remotely. RESULTS: The cell phone intervention was delivered almost entirely via cell phone and was always-present, proactive, and interactive-providing passive and active reminders, frequent opportunities for knowledge dissemination, and multiple tools for self-tracking and receiving tailored feedback. The intervention changed over 2 years to promote and sustain engagement. The personal coaching intervention, alternatively, was primarily personal coaching with trained coaches based on a proven intervention, enhanced with a mobile application, but where all interactions with the technology were participant-initiated. CONCLUSION: The complexity and length of the technology-based randomized clinical trial created challenges in engagement and technology adaptation, which were generally discovered using novel remote monitoring technology and addressed using the adaptive intervention design. Investigators should plan to develop tools and procedures that explicitly support continuous remote monitoring of interventions to support adaptive intervention design in long-term, technology-based studies, as well as developing the interventions themselves.
Resumo:
Background: Sickle Cell Disease (SCD) is a genetic hematological disorder that affects more than 7 million people globally (NHLBI, 2009). It is estimated that 50% of adults with SCD experience pain on most days, with 1/3 experiencing chronic pain daily (Smith et al., 2008). Persons with SCD also experience higher levels of pain catastrophizing (feelings of helplessness, pain rumination and magnification) than other chronic pain conditions, which is associated with increases in pain intensity, pain behavior, analgesic consumption, frequency and duration of hospital visits, and with reduced daily activities (Sullivan, Bishop, & Pivik, 1995; Keefe et al., 2000; Gil et al., 1992 & 1993). Therefore effective interventions are needed that can successfully be used manage pain and pain-related outcomes (e.g., pain catastrophizing) in persons with SCD. A review of the literature demonstrated limited information regarding the feasibility and efficacy of non-pharmacological approaches for pain in persons with SCD, finding an average effect size of .33 on pain reduction across measurable non-pharmacological studies. Second, a prospective study on persons with SCD that received care for a vaso-occlusive crisis (VOC; N = 95) found: (1) high levels of patient reported depression (29%) and anxiety (34%), and (2) that unemployment was significantly associated with increased frequency of acute care encounters and hospital admissions per person. Research suggests that one promising category of non-pharmacological interventions for managing both physical and affective components of pain are Mindfulness-based Interventions (MBIs; Thompson et al., 2010; Cox et al., 2013). The primary goal of this dissertation was thus to develop and test the feasibility, acceptability, and efficacy of a telephonic MBI for pain catastrophizing in persons with SCD and chronic pain.
Methods: First, a telephonic MBI was developed through an informal process that involved iterative feedback from patients, clinical experts in SCD and pain management, social workers, psychologists, and mindfulness clinicians. Through this process, relevant topics and skills were selected to adapt in each MBI session. Second, a pilot randomized controlled trial was conducted to test the feasibility, acceptability, and efficacy of the telephonic MBI for pain catastrophizing in persons with SCD and chronic pain. Acceptability and feasibility were determined by assessment of recruitment, attrition, dropout, and refusal rates (including refusal reasons), along with semi-structured interviews with nine randomly selected patients at the end of study. Participants completed assessments at baseline, Week 1, 3, and 6 to assess efficacy of the intervention on decreasing pain catastrophizing and other pain-related outcomes.
Results: A telephonic MBI is feasible and acceptable for persons with SCD and chronic pain. Seventy-eight patients with SCD and chronic pain were approached, and 76% (N = 60) were enrolled and randomized. The MBI attendance rate, approximately 57% of participants completing at least four mindfulness sessions, was deemed acceptable, and participants that received the telephonic MBI described it as acceptable, easy to access, and consume in post-intervention interviews. The amount of missing data was undesirable (MBI condition, 40%; control condition, 25%), but fell within the range of expected missing outcome data for a RCT with multiple follow-up assessments. Efficacy of the MBI on pain catastrophizing could not be determined due to small sample size and degree of missing data, but trajectory analyses conducted for the MBI condition only trended in the right direction and pain catastrophizing approached statistically significance.
Conclusion: Overall results showed that at telephonic group-based MBI is acceptable and feasible for persons with SCD and chronic pain. Though the study was not able to determine treatment efficacy nor powered to detect a statistically significant difference between conditions, participants (1) described the intervention as acceptable, and (2) the observed effect sizes for the MBI condition demonstrated large effects of the MBI on pain catastrophizing, mental health, and physical health. Replication of this MBI study with a larger sample size, active control group, and additional assessments at the end of each week (e.g., Week 1 through Week 6) is needed to determine treatment efficacy. Many lessons were learned that will guide the development of future studies including which MBI strategies were most helpful, methods to encourage continued participation, and how to improve data capture.