3 resultados para Aerospace Medicine
em Duke University
Resumo:
BACKGROUND: Palliative medicine has made rapid progress in establishing its scientific and clinical legitimacy, yet the evidence base to support clinical practice remains deficient in both the quantity and quality of published studies. Historically, the conduct of research in palliative care populations has been impeded by multiple barriers including health care system fragmentation, small number and size of potential sites for recruitment, vulnerability of the population, perceptions of inappropriateness, ethical concerns, and gate-keeping. METHODS: A group of experienced investigators with backgrounds in palliative care research convened to consider developing a research cooperative group as a mechanism for generating high-quality evidence on prioritized, clinically relevant topics in palliative care. RESULTS: The resulting Palliative Care Research Cooperative (PCRC) agreed on a set of core principles: active, interdisciplinary membership; commitment to shared research purposes; heterogeneity of participating sites; development of research capacity in participating sites; standardization of methodologies, such as consenting and data collection/management; agile response to research requests from government, industry, and investigators; focus on translation; education and training of future palliative care researchers; actionable results that can inform clinical practice and policy. Consensus was achieved on a first collaborative study, a randomized clinical trial of statin discontinuation versus continuation in patients with a prognosis of less than 6 months who are taking statins for primary or secondary prevention. This article describes the formation of the PCRC, highlighting processes and decisions taken to optimize the cooperative group's success.
Resumo:
BACKGROUND: Patients, clinicians, researchers and payers are seeking to understand the value of using genomic information (as reflected by genotyping, sequencing, family history or other data) to inform clinical decision-making. However, challenges exist to widespread clinical implementation of genomic medicine, a prerequisite for developing evidence of its real-world utility. METHODS: To address these challenges, the National Institutes of Health-funded IGNITE (Implementing GeNomics In pracTicE; www.ignite-genomics.org ) Network, comprised of six projects and a coordinating center, was established in 2013 to support the development, investigation and dissemination of genomic medicine practice models that seamlessly integrate genomic data into the electronic health record and that deploy tools for point of care decision making. IGNITE site projects are aligned in their purpose of testing these models, but individual projects vary in scope and design, including exploring genetic markers for disease risk prediction and prevention, developing tools for using family history data, incorporating pharmacogenomic data into clinical care, refining disease diagnosis using sequence-based mutation discovery, and creating novel educational approaches. RESULTS: This paper describes the IGNITE Network and member projects, including network structure, collaborative initiatives, clinical decision support strategies, methods for return of genomic test results, and educational initiatives for patients and providers. Clinical and outcomes data from individual sites and network-wide projects are anticipated to begin being published over the next few years. CONCLUSIONS: The IGNITE Network is an innovative series of projects and pilot demonstrations aiming to enhance translation of validated actionable genomic information into clinical settings and develop and use measures of outcome in response to genome-based clinical interventions using a pragmatic framework to provide early data and proofs of concept on the utility of these interventions. Through these efforts and collaboration with other stakeholders, IGNITE is poised to have a significant impact on the acceleration of genomic information into medical practice.