4 resultados para Acyclic Permutation

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimation of the skeleton of a directed acyclic graph (DAG) is of great importance for understanding the underlying DAG and causal effects can be assessed from the skeleton when the DAG is not identifiable. We propose a novel method named PenPC to estimate the skeleton of a high-dimensional DAG by a two-step approach. We first estimate the nonzero entries of a concentration matrix using penalized regression, and then fix the difference between the concentration matrix and the skeleton by evaluating a set of conditional independence hypotheses. For high-dimensional problems where the number of vertices p is in polynomial or exponential scale of sample size n, we study the asymptotic property of PenPC on two types of graphs: traditional random graphs where all the vertices have the same expected number of neighbors, and scale-free graphs where a few vertices may have a large number of neighbors. As illustrated by extensive simulations and applications on gene expression data of cancer patients, PenPC has higher sensitivity and specificity than the state-of-the-art method, the PC-stable algorithm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a new approach to the fermion sign problem in systems where there is a coupling U such that when it is infinite the fermions are paired into bosons, and there is no fermion permutation sign to worry about. We argue that as U becomes finite, fermions are liberated but are naturally confined to regions which we refer to as fermion bags. The fermion sign problem is then confined to these bags and may be solved using the determinantal trick. In the parameter regime where the fermion bags are small and their typical size does not grow with the system size, construction of Monte Carlo methods that are far more efficient than conventional algorithms should be possible. In the region where the fermion bags grow with system size, the fermion bag approach continues to provide an alternative approach to the problem but may lose its main advantage in terms of efficiency. The fermion bag approach also provides new insights and solutions to sign problems. A natural solution to the "silver blaze problem" also emerges. Using the three-dimensional massless lattice Thirring model as an example, we introduce the fermion bag approach and demonstrate some of these features. We compute the critical exponents at the quantum phase transition and find ν=0.87(2) and η=0.62(2). © 2010 The American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Many analyses of microarray association studies involve permutation, bootstrap resampling and cross-validation, that are ideally formulated as embarrassingly parallel computing problems. Given that these analyses are computationally intensive, scalable approaches that can take advantage of multi-core processor systems need to be developed. RESULTS: We have developed a CUDA based implementation, permGPU, that employs graphics processing units in microarray association studies. We illustrate the performance and applicability of permGPU within the context of permutation resampling for a number of test statistics. An extensive simulation study demonstrates a dramatic increase in performance when using permGPU on an NVIDIA GTX 280 card compared to an optimized C/C++ solution running on a conventional Linux server. CONCLUSIONS: permGPU is available as an open-source stand-alone application and as an extension package for the R statistical environment. It provides a dramatic increase in performance for permutation resampling analysis in the context of microarray association studies. The current version offers six test statistics for carrying out permutation resampling analyses for binary, quantitative and censored time-to-event traits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MOTIVATION: Technological advances that allow routine identification of high-dimensional risk factors have led to high demand for statistical techniques that enable full utilization of these rich sources of information for genetics studies. Variable selection for censored outcome data as well as control of false discoveries (i.e. inclusion of irrelevant variables) in the presence of high-dimensional predictors present serious challenges. This article develops a computationally feasible method based on boosting and stability selection. Specifically, we modified the component-wise gradient boosting to improve the computational feasibility and introduced random permutation in stability selection for controlling false discoveries. RESULTS: We have proposed a high-dimensional variable selection method by incorporating stability selection to control false discovery. Comparisons between the proposed method and the commonly used univariate and Lasso approaches for variable selection reveal that the proposed method yields fewer false discoveries. The proposed method is applied to study the associations of 2339 common single-nucleotide polymorphisms (SNPs) with overall survival among cutaneous melanoma (CM) patients. The results have confirmed that BRCA2 pathway SNPs are likely to be associated with overall survival, as reported by previous literature. Moreover, we have identified several new Fanconi anemia (FA) pathway SNPs that are likely to modulate survival of CM patients. AVAILABILITY AND IMPLEMENTATION: The related source code and documents are freely available at https://sites.google.com/site/bestumich/issues. CONTACT: yili@umich.edu.