3 resultados para Acute toxicity of copper
em Duke University
Resumo:
The ability to manipulate the coordination chemistry of metal ions has significant ramifications for the study and treatment of metal-related health concerns, including iron overload, UV skin damage, and microbial infection among many other conditions. To address this concern, chelating agents that change their metal binding characteristics in response to external stimuli have been synthesized and characterized by several spectroscopic and chromatographic analytical methods. The primary stimuli of interest for this work are light and hydrogen peroxide.
Herein we report the previously unrecognized photochemistry of aroylhydrazone metal chelator ((E)-N′-[1-(2-hydroxyphenyl)ethyliden]isonicotinoylhydrazide) (HAPI) and its relation to HAPI metal binding properties. Based on promising initial results, a series of HAPI analogues was prepared to probe the structure-function relationships of aroylhydrazone photochemistry. These efforts elucidate the tunable nature of several aroylhydrazone photoswitching properties.
Ongoing efforts in this laboratory seek to develop compounds called prochelators that exhibit a switch from low to high metal binding affinity upon activation by a stimulus of interest. In this context, we present new strategies to install multiple desired functions into a single structure. The prochelator 2-((E)-1-(2-isonicotinoylhydrazono)ethyl)phenyl (E)-3-(2,4-dihydroxyphenyl)acrylate (PC-HAPI) is masked with a photolabile trans-cinnamic acid protecting group that releases umbelliferone, a UV-absorbing, antioxidant coumarin along with a chelating agent upon UV irradiation. In addition to the antioxidant effects of the coumarin, the released chelator (HAPI) inhibits metal-catalyzed production of damaging reactive oxygen species. Finally a peroxide-sensitive prochelator quinolin-8-yl (Z)-3-(4-hydroxy-2-((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)oxy)phenyl)acrylate (BCQ) has been prepared using a novel synthetic route for functionalized cis-cinnamate esters. BCQ uses a novel masking strategy to trigger a 90-fold increase in fluorescence emission, along with the release of a desired chelator, in the presence of hydrogen peroxide.
Resumo:
Rapid adaptation and tolerance is a phenomenon experienced by a variety of organisms typically because of new and harsh environments. Mimulus guttatus, a plant commonly seen on the west coast of the United States, is a prime example as it has rapidly evolved to soil contamination by copper due to mining in California in the last 150 years. There have been two hypotheses posed by researchers as to the genetic basis of how organisms have evolved so quickly which I set out to study: 1) There is a low frequency of tolerant genotypes in the ancestral population otherwise known as standing variation or 2) new mutations occurred once exposed to a new environment. In the past, researchers found it difficult to distinguish between the two because they lacked the technology we have today for DNA analysis. I used four different populations of M. guttatus from varying locations in order to address which hypothesis was valid. I conducted both survival assays of these populations and DNA analysis of known tolerant and non-tolerant lines using a copper oxidase gene. I found that there was at least some degree of tolerance in all populations in the survival assays, supporting the hypothesis of standing variation. I also found patterns within DNA analysis suggesting the copper oxidase gene would be useful for further study to verify the standing variation hypothesis. The results from this experiment helps in understanding rapid evolution not just in the context of soil contamination by metals but also ties back to why an alarming number of species are not able to adapt to our constantly changing world.
Resumo:
Unacylated ghrelin (UAG) is the predominant ghrelin isoform in the circulation. Despite its inability to activate the classical ghrelin receptor, preclinical studies suggest that UAG may promote β-cell function. We hypothesized that UAG would oppose the effects of acylated ghrelin (AG) on insulin secretion and glucose tolerance. AG (1 µg/kg/h), UAG (4 µg/kg/h), combined AG+UAG, or saline were infused to 17 healthy subjects (9 men and 8 women) on four occasions in randomized order. Ghrelin was infused for 30 min to achieve steady-state levels and continued through a 3-h intravenous glucose tolerance test. The acute insulin response to glucose (AIRg), insulin sensitivity index (SI), disposition index (DI), and intravenous glucose tolerance (kg) were compared for each subject during the four infusions. AG infusion raised fasting glucose levels but had no effect on fasting plasma insulin. Compared with the saline control, AG and AG+UAG both decreased AIRg, but UAG alone had no effect. SI did not differ among the treatments. AG, but not UAG, reduced DI and kg and increased plasma growth hormone. UAG did not alter growth hormone, cortisol, glucagon, or free fatty acid levels. UAG selectively decreased glucose and fructose consumption compared with the other treatments. In contrast to previous reports, acute administration of UAG does not have independent effects on glucose tolerance or β-cell function and neither augments nor antagonizes the effects of AG.