4 resultados para Access Network Performance
em Duke University
Resumo:
The successful design of biomaterial scaffolds for articular cartilage tissue engineering requires an understanding of the impact of combinations of material formulation parameters on diverse and competing functional outcomes of biomaterial performance. This study sought to explore the use of a type of unsupervised artificial network, a self-organizing map, to identify relationships between scaffold formulation parameters (crosslink density, molecular weight, and concentration) and 11 such outcomes (including mechanical properties, matrix accumulation, metabolite usage and production, and histological appearance) for scaffolds formed from crosslinked elastin-like polypeptide (ELP) hydrogels. The artificial neural network recognized patterns in functional outcomes and provided a set of relationships between ELP formulation parameters and measured outcomes. Mapping resulted in the best mean separation amongst neurons for mechanical properties and pointed to crosslink density as the strongest predictor of most outcomes, followed by ELP concentration. The map also grouped formulations together that simultaneously resulted in the highest values for matrix production, greatest changes in metabolite consumption or production, and highest histological scores, indicating that the network was able to recognize patterns amongst diverse measurement outcomes. These results demonstrated the utility of artificial neural network tools for recognizing relationships in systems with competing parameters, toward the goal of optimizing and accelerating the design of biomaterial scaffolds for articular cartilage tissue engineering.
Resumo:
Emotional and attentional functions are known to be distributed along ventral and dorsal networks in the brain, respectively. However, the interactions between these systems remain to be specified. The present study used event-related functional magnetic resonance imaging (fMRI) to investigate how attentional focus can modulate the neural activity elicited by scenes that vary in emotional content. In a visual oddball task, aversive and neutral scenes were presented intermittently among circles and squares. The squares were frequent standard events, whereas the other novel stimulus categories occurred rarely. One experimental group [N=10] was instructed to count the circles, whereas another group [N=12] counted the emotional scenes. A main effect of emotion was found in the amygdala (AMG) and ventral frontotemporal cortices. In these regions, activation was significantly greater for emotional than neutral stimuli but was invariant to attentional focus. A main effect of attentional focus was found in dorsal frontoparietal cortices, whose activity signaled task-relevant target events irrespective of emotional content. The only brain region that was sensitive to both emotion and attentional focus was the anterior cingulate gyrus (ACG). When circles were task-relevant, the ACG responded equally to circle targets and distracting emotional scenes. The ACG response to emotional scenes increased when they were task-relevant, and the response to circles concomitantly decreased. These findings support and extend prominent network theories of emotion-attention interactions that highlight the integrative role played by the anterior cingulate.
Resumo:
Addressing global fisheries overexploitation requires better understanding of how small-scale fishing communities in developing countries limit access to fishing grounds. We analyze the performance of a system based on individual licenses and a common property-rights regime in their ability to generate incentives for self-governance and conservation of fishery resources. Using a qualitative before-after-control-impact approach, we compare two neighbouring fishing communities in the Gulf of California, Mexico. Both were initially governed by the same permit system, are situated in the same ecosystem, use similar harvesting technology, and have overharvested similar species. One community changed to a common property-right regime, enabling the emergence of access controls and avoiding overexploitation of benthic resources, while the other community, still relies on the permit system. We discuss the roles played by power, institutions, socio-historic, and biophysical factors to develop access controls. © 2012 The Author(s).
Resumo:
Mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) represent promising cell sources for angiogenic therapies. There are, however, conflicting reports regarding the ability of MSCs to support network formation of endothelial cells. The goal of this study was to assess the ability of human bone marrow-derived MSCs to support network formation of endothelial outgrowth cells (EOCs) derived from umbilical cord blood EPCs. We hypothesized that upon in vitro coculture, MSCs and EOCs promote a microenvironment conducive for EOC network formation without the addition of angiogenic growth supplements. EOC networks formed by coculture with MSCs underwent regression and cell loss by day 10 with a near 4-fold and 2-fold reduction in branch points and mean segment length, respectively, in comparison with networks formed by coculture vascular smooth muscle cell (SMC) cocultures. EOC network regression in MSC cocultures was not caused by lack of vascular endothelial growth factor (VEGF)-A or changes in TGF-β1 or Ang-2 supernatant concentrations in comparison with SMC cocultures. Removal of CD45+ cells from MSCs improved EOC network formation through a 2-fold increase in total segment length and number of branch points in comparison to unsorted MSCs by day 6. These improvements, however, were not sustained by day 10. CD45 expression in MSC cocultures correlated with EOC network regression with a 5-fold increase between day 6 and day 10 of culture. The addition of supplemental growth factors VEGF, fibroblastic growth factor-2, EGF, hydrocortisone, insulin growth factor-1, ascorbic acid, and heparin to MSC cocultures promoted stable EOC network formation over 2 weeks in vitro, without affecting CD45 expression, as evidenced by a lack of significant differences in total segment length (p=0.96). These findings demonstrate the ability of MSCs to support EOC network formation correlates with removal of CD45+ cells and improves upon the addition of soluble growth factors.