12 resultados para A-site substitution

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Co-occurrence of HIV and substance abuse is associated with poor outcomes for HIV-related health and substance use. Integration of substance use and medical care holds promise for HIV patients, yet few integrated treatment models have been reported. Most of the reported models lack data on treatment outcomes in diverse settings. This study examined the substance use outcomes of an integrated treatment model for patients with both HIV and substance use at three different clinics. Sites differed by type and degree of integration, with one integrated academic medical center, one co-located academic medical center, and one co-located community health center. Participants (n=286) received integrated substance use and HIV treatment for 12 months and were interviewed at 6-month intervals. We used linear generalized estimating equation regression analysis to examine changes in Addiction Severity Index (ASI) alcohol and drug severity scores. To test whether our treatment was differentially effective across sites, we compared a full model including site by time point interaction terms to a reduced model including only site fixed effects. Alcohol severity scores decreased significantly at 6 and 12 months. Drug severity scores decreased significantly at 12 months. Once baseline severity variation was incorporated into the model, there was no evidence of variation in alcohol or drug score changes by site. Substance use outcomes did not differ by age, gender, income, or race. This integrated treatment model offers an option for treating diverse patients with HIV and substance use in a variety of clinic settings. Studies with control groups are needed to confirm these findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is growing evidence that organo-nitrogen compounds may constitute a significant fraction of the aerosol nitrogen (N) budget. However, very little is known about the abundance and origin of this aerosol fraction. In this study, the concentration of organic nitrogen (ON) and major inorganic ions in PM2.5 aerosol were measured at the Duke Forest Research Facility near Chapel Hill, NC, during January and June of 2007. A novel on-line instrument was used, which is based on the Steam Jet Aerosol Collector (SJAC) coupled to an on-line total carbon/total nitrogen analyzer and two on-line ion chromatographs. The concentration of ON was determined by tracking the difference in concentrations of total nitrogen and of inorganic nitrogen (determined as the sum of N-ammonium and N-nitrate). The time resolution of the instrument was 30 min with a detection limit for major aerosol components of ∼0.1 mu;gm-3. Nitrogen in organic compounds contributed ∼33% on average to the total nitrogen concentration in PM2.5, illustrating the importance of this aerosol component. Absolute concentrations of ON, however, were relatively low (lt;1.0 mu;gm-3) with an average of 0.16 mu;gm-3. The absolute and relative contribution of ON to the total aerosol nitrogen budget was practically the same in January and June. In January, the concentration of ON tended to be higher during the night and early morning, while in June it tended to be higher during the late afternoon and evening. Back-trajectories and correlation with wind direction indicate that higher concentrations of ON occur in air masses originating over the continental US, while marine air masses are characterized by lower ON concentrations. The data presented in this study suggests that ON has a variety of sources, which are very difficult to quantify without information on chemical composition of this important aerosol fraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: With the globalization of clinical trials, a growing emphasis has been placed on the standardization of the workflow in order to ensure the reproducibility and reliability of the overall trial. Despite the importance of workflow evaluation, to our knowledge no previous studies have attempted to adapt existing modeling languages to standardize the representation of clinical trials. Unified Modeling Language (UML) is a computational language that can be used to model operational workflow, and a UML profile can be developed to standardize UML models within a given domain. This paper's objective is to develop a UML profile to extend the UML Activity Diagram schema into the clinical trials domain, defining a standard representation for clinical trial workflow diagrams in UML. METHODS: Two Brazilian clinical trial sites in rheumatology and oncology were examined to model their workflow and collect time-motion data. UML modeling was conducted in Eclipse, and a UML profile was developed to incorporate information used in discrete event simulation software. RESULTS: Ethnographic observation revealed bottlenecks in workflow: these included tasks requiring full commitment of CRCs, transferring notes from paper to computers, deviations from standard operating procedures, and conflicts between different IT systems. Time-motion analysis revealed that nurses' activities took up the most time in the workflow and contained a high frequency of shorter duration activities. Administrative assistants performed more activities near the beginning and end of the workflow. Overall, clinical trial tasks had a greater frequency than clinic routines or other general activities. CONCLUSIONS: This paper describes a method for modeling clinical trial workflow in UML and standardizing these workflow diagrams through a UML profile. In the increasingly global environment of clinical trials, the standardization of workflow modeling is a necessary precursor to conducting a comparative analysis of international clinical trials workflows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic exposure of various cell types to adrenergic agonists leads to a decrease in cell surface beta 2-adrenergic receptor (beta 2AR) number. Sequestration of the receptor away from the cell surface as well as a down-regulation of the total number of cellular receptors are believed to contribute to this agonist-mediated regulation of receptor number. However, the molecular mechanisms underlying these phenomena are not well characterized. Recently, tyrosine residues located in the cytoplasmic tails of several membrane receptors, such as the low density lipoprotein and mannose-6-phosphate receptors, have been suggested as playing an important role in the agonist-induced internalization of these receptors. Accordingly, we assessed the potential role of two tyrosine residues in the carboxyl tail of the human beta 2AR in agonist-induced sequestration and down-regulation of the receptor. Tyr-350 and Tyr-354 of the human beta 2AR were replaced with alanine residues by site-directed mutagenesis and both wild-type and mutant beta 2AR were stably expressed in transformed Chinese hamster fibroblasts. The mutation dramatically decreased the ability of the beta 2AR to undergo isoproterenol-induced down-regulation. However, the substitution of Tyr-350 and Tyr-354 did not affect agonist-induced sequestration of the receptor. These results suggest that tyrosine residues in the cytoplasmic tail of human beta 2AR are crucial determinants involved in its down-regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: We previously reported models that characterized the synergistic interaction between remifentanil and sevoflurane in blunting responses to verbal and painful stimuli. This preliminary study evaluated the ability of these models to predict a return of responsiveness during emergence from anesthesia and a response to tibial pressure when patients required analgesics in the recovery room. We hypothesized that model predictions would be consistent with observed responses. We also hypothesized that under non-steady-state conditions, accounting for the lag time between sevoflurane effect-site concentration (Ce) and end-tidal (ET) concentration would improve predictions. METHODS: Twenty patients received a sevoflurane, remifentanil, and fentanyl anesthetic. Two model predictions of responsiveness were recorded at emergence: an ET-based and a Ce-based prediction. Similarly, 2 predictions of a response to noxious stimuli were recorded when patients first required analgesics in the recovery room. Model predictions were compared with observations with graphical and temporal analyses. RESULTS: While patients were anesthetized, model predictions indicated a high likelihood that patients would be unresponsive (> or = 99%). However, after termination of the anesthetic, models exhibited a wide range of predictions at emergence (1%-97%). Although wide, the Ce-based predictions of responsiveness were better distributed over a percentage ranking of observations than the ET-based predictions. For the ET-based model, 45% of the patients awoke within 2 min of the 50% model predicted probability of unresponsiveness and 65% awoke within 4 min. For the Ce-based model, 45% of the patients awoke within 1 min of the 50% model predicted probability of unresponsiveness and 85% awoke within 3.2 min. Predictions of a response to a painful stimulus in the recovery room were similar for the Ce- and ET-based models. DISCUSSION: Results confirmed, in part, our study hypothesis; accounting for the lag time between Ce and ET sevoflurane concentrations improved model predictions of responsiveness but had no effect on predicting a response to a noxious stimulus in the recovery room. These models may be useful in predicting events of clinical interest but large-scale evaluations with numerous patients are needed to better characterize model performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CD133 is one of the most common stem cell markers, and functional single nucleotide polymorphisms (SNPs) of CD133 may modulate its gene functions and thus cancer risk and patient survival. We hypothesized that potentially functional CD133 SNPs are associated with gastric cancer (GC) risk and survival. To test this hypothesis, we conducted a case-control study of 371 GC patients and 313 cancer-free controls frequency-matched by age, sex, and ethnicity. We genotyped four selected, potentially functional CD133 SNPs (rs2240688A>C, rs7686732C>G, rs10022537T>A, and rs3130C>T) and used logistic regression analysis for associations of these SNPs with GC risk and Cox hazards regression analysis for survival. We found that compared with the miRNA binding site rs2240688 AA genotype, AC + CC genotypes were associated with significantly increased GC risk (adjusted OR = 1.52, 95% CI = 1.09-2.13); for another miRNA binding site rs3130C>T SNP, the TT genotype was associated with significantly reduced GC risk (adjusted OR = 0.68, 95% CI = 0.48-0.97), compared with CC + CT genotypes. In all patients, the risk rs3130 TT variant genotype was significantly associated with overall survival (OS) (adjusted P(trend) = 0.016 and 0.007 under additive and recessive models, respectively). These findings suggest that these two CD133 miRNA binding site variants, rs2240688 and rs3130, may be potential biomarkers for genetic susceptibility to GC and possible predictors for survival in GC patients but require further validation by larger studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing atmospheric carbon dioxide (CO2) from anthropogenic sources is acidifying marine environments resulting in potentially dramatic consequences for the physical, chemical and biological functioning of these ecosystems. If current trends continue, mean ocean pH is expected to decrease by ~0.2 units over the next ~50 years. Yet, there is also substantial temporal variability in pH and other carbon system parameters in the ocean resulting in regions that already experience change that exceeds long-term projected trends in pH. This points to short-term dynamics as an important layer of complexity on top of long-term trends. Thus, in order to predict future climate change impacts, there is a critical need to characterize the natural range and dynamics of the marine carbonate system and the mechanisms responsible for observed variability. Here, we present pH and dissolved inorganic carbon (DIC) at time intervals spanning 1 hour to >1 year from a dynamic, coastal, temperate marine system (Beaufort Inlet, Beaufort NC USA) to characterize the carbonate system at multiple time scales. Daily and seasonal variation of the carbonate system is largely driven by temperature, alkalinity and the balance between primary production and respiration, but high frequency change (hours to days) is further influenced by water mass movement (e.g. tides) and stochastic events (e.g. storms). Both annual (~0.3 units) and diurnal (~0.1 units) variability in coastal ocean acidity are similar in magnitude to 50 year projections of ocean acidity associated with increasing atmospheric CO2. The environmental variables driving these changes highlight the importance of characterizing the complete carbonate system rather than just pH. Short-term dynamics of ocean carbon parameters may already exert significant pressure on some coastal marine ecosystems with implications for ecology, biogeochemistry and evolution and this shorter term variability layers additive effects and complexity, including extreme values, on top of long-term trends in ocean acidification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellular stresses activate the tumor suppressor p53 protein leading to selective binding to DNA response elements (REs) and gene transactivation from a large pool of potential p53 REs (p53REs). To elucidate how p53RE sequences and local chromatin context interact to affect p53 binding and gene transactivation, we mapped genome-wide binding localizations of p53 and H3K4me3 in untreated and doxorubicin (DXR)-treated human lymphoblastoid cells. We examined the relationships among p53 occupancy, gene expression, H3K4me3, chromatin accessibility (DNase 1 hypersensitivity, DHS), ENCODE chromatin states, p53RE sequence, and evolutionary conservation. We observed that the inducible expression of p53-regulated genes was associated with the steady-state chromatin status of the cell. Most highly inducible p53-regulated genes were suppressed at baseline and marked by repressive histone modifications or displayed CTCF binding. Comparison of p53RE sequences residing in different chromatin contexts demonstrated that weaker p53REs resided in open promoters, while stronger p53REs were located within enhancers and repressed chromatin. p53 occupancy was strongly correlated with similarity of the target DNA sequences to the p53RE consensus, but surprisingly, inversely correlated with pre-existing nucleosome accessibility (DHS) and evolutionary conservation at the p53RE. Occupancy by p53 of REs that overlapped transposable element (TE) repeats was significantly higher (p<10-7) and correlated with stronger p53RE sequences (p<10-110) relative to nonTE-associated p53REs, particularly for MLT1H, LTR10B, and Mer61 TEs. However, binding at these elements was generally not associated with transactivation of adjacent genes. Occupied p53REs located in L2-like TEs were unique in displaying highly negative PhyloP scores (predicted fast-evolving) and being associated with altered H3K4me3 and DHS levels. These results underscore the systematic interaction between chromatin status and p53RE context in the induced transactivation response. This p53 regulated response appears to have been tuned via evolutionary processes that may have led to repression and/or utilization of p53REs originating from primate-specific transposon elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the prognosis of ambulatory heart failure (HF) has improved dramatically there have been few advances in the management of acute HF (AHF). Despite regional differences in patient characteristics, background therapy, and event rates, AHF clinical trial enrollment has transitioned from North America and Western Europe to Eastern Europe, South America, and Asia-Pacific where regulatory burden and cost of conducting research may be less prohibitive. It is unclear if the results of clinical trials conducted outside of North America are generalizable to US patient populations. This article uses AHF as a paradigm and identifies barriers and practical solutions to successfully conducting site-based research in North America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this research was to use next generation sequencing to identify mutations in patients with primary immunodeficiency diseases whose pathogenic gene mutations had not been identified. Remarkably, four unrelated patients were found by next generation sequencing to have the same heterozygous mutation in an essential donor splice site of PIK3R1 (NM_181523.2:c.1425 + 1G > A) found in three prior reports. All four had the Hyper IgM syndrome, lymphadenopathy and short stature, and one also had SHORT syndrome. They were investigated with in vitro immune studies, RT-PCR, and immunoblotting studies of the mutation's effect on mTOR pathway signaling. All patients had very low percentages of memory B cells and class-switched memory B cells and reduced numbers of naïve CD4+ and CD8+ T cells. RT-PCR confirmed the presence of both an abnormal 273 base-pair (bp) size and a normal 399 bp size band in the patient and only the normal band was present in the parents. Following anti-CD40 stimulation, patient's EBV-B cells displayed higher levels of S6 phosphorylation (mTOR complex 1 dependent event), Akt phosphorylation at serine 473 (mTOR complex 2 dependent event), and Akt phosphorylation at threonine 308 (PI3K/PDK1 dependent event) than controls, suggesting elevated mTOR signaling downstream of CD40. These observations suggest that amino acids 435-474 in PIK3R1 are important for its stability and also its ability to restrain PI3K activity. Deletion of Exon 11 leads to constitutive activation of PI3K signaling. This is the first report of this mutation and immunologic abnormalities in SHORT syndrome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Small molecule inhibitors of histone deacetylases (HDACi) hold promise as anticancer agents for particular malignancies. However, clinical use is often confounded by toxicity, perhaps due to indiscriminate hyperacetylation of cellular proteins. Therefore, elucidating the mechanisms by which HDACi trigger differentiation, cell cycle arrest, or apoptosis of cancer cells could inform development of more targeted therapies. We used the myelogenous leukemia line K562 as a model of HDACi-induced differentiation to investigate chromatin accessibility (DNase-seq) and expression (RNA-seq) changes associated with this process. RESULTS: We identified several thousand specific regulatory elements [~10 % of total DNase I-hypersensitive (DHS) sites] that become significantly more or less accessible with sodium butyrate or suberanilohydroxamic acid treatment. Most of the differential DHS sites display hallmarks of enhancers, including being enriched for non-promoter regions, associating with nearby gene expression changes, and increasing luciferase reporter expression in K562 cells. Differential DHS sites were enriched for key hematopoietic lineage transcription factor motifs, including SPI1 (PU.1), a known pioneer factor. We found PU.1 increases binding at opened DHS sites with HDACi treatment by ChIP-seq, but PU.1 knockdown by shRNA fails to block the chromatin accessibility and expression changes. A machine-learning approach indicates H3K27me3 initially marks PU.1-bound sites that open with HDACi treatment, suggesting these sites are epigenetically poised. CONCLUSIONS: We find HDACi treatment of K562 cells results in site-specific chromatin remodeling at epigenetically poised regulatory elements. PU.1 shows evidence of a pioneer role in this process by marking poised enhancers but is not required for transcriptional activation.