4 resultados para A Series of Unfortunate Events

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

STUDY DESIGN: The inflammatory responses of primary human intervertebral disc (IVD) cells to tumor necrosis factor α (TNF-α) and an antagonist were evaluated in vitro. OBJECTIVE: To investigate an ability for soluble TNF receptor type II (sTNFRII) to antagonize TNF-α-induced inflammatory events in primary human IVD cells in vitro. SUMMARY OF BACKGROUND DATA: TNF-α is a known mediator of inflammation and pain associated with radiculopathy and IVD degeneration. sTNFRs and their analogues are of interest for the clinical treatment of these IVD pathologies, although information on the effects of sTNFR on human IVD cells remains unknown. METHODS: IVD cells were isolated from surgical tissues procured from 15 patients and cultured with or without 1.4 nmol/L TNF-α (25 ng/mL). Treatment groups were coincubated with varying doses of sTNFRII (12.5-100 nmol/L). Nitric oxide (NO), prostaglandin E₂ (PGE₂), and interleukin-6 (IL6) levels in media were quantified to characterize the inflammatory phenotype of the IVD cells. RESULTS: Across all patients, TNF-α induced large, statistically significant increases in NO, PGE₂, and IL6 secretion from IVD cells compared with controls (60-, 112-, and 4-fold increases, respectively; P < 0.0001). Coincubation of TNF-α with nanomolar doses of sTNFRII significantly attenuated the secretion of NO and PGE₂ in a dose-dependent manner, whereas IL6 levels were unchanged. Mean IC₅₀ values for NO and PGE₂ were found to be 35.1 and 20.5 nmol/L, respectively. CONCLUSION: Nanomolar concentrations of sTNFRII were able to significantly attenuate the effects of TNF-α on primary human IVD cells in vitro. These results suggest this sTNFR to be a potent TNF antagonist with potential to attenuate inflammation in IVD pathology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While genome-wide gene expression data are generated at an increasing rate, the repertoire of approaches for pattern discovery in these data is still limited. Identifying subtle patterns of interest in large amounts of data (tens of thousands of profiles) associated with a certain level of noise remains a challenge. A microarray time series was recently generated to study the transcriptional program of the mouse segmentation clock, a biological oscillator associated with the periodic formation of the segments of the body axis. A method related to Fourier analysis, the Lomb-Scargle periodogram, was used to detect periodic profiles in the dataset, leading to the identification of a novel set of cyclic genes associated with the segmentation clock. Here, we applied to the same microarray time series dataset four distinct mathematical methods to identify significant patterns in gene expression profiles. These methods are called: Phase consistency, Address reduction, Cyclohedron test and Stable persistence, and are based on different conceptual frameworks that are either hypothesis- or data-driven. Some of the methods, unlike Fourier transforms, are not dependent on the assumption of periodicity of the pattern of interest. Remarkably, these methods identified blindly the expression profiles of known cyclic genes as the most significant patterns in the dataset. Many candidate genes predicted by more than one approach appeared to be true positive cyclic genes and will be of particular interest for future research. In addition, these methods predicted novel candidate cyclic genes that were consistent with previous biological knowledge and experimental validation in mouse embryos. Our results demonstrate the utility of these novel pattern detection strategies, notably for detection of periodic profiles, and suggest that combining several distinct mathematical approaches to analyze microarray datasets is a valuable strategy for identifying genes that exhibit novel, interesting transcriptional patterns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A model of telescoping is proposed that assumes no systematic errors in dating. Rather, the overestimation of recent occurrences of events is based on the combination of three factors: (1) Retention is greater for recent events; (2) errors in dating, though unbiased, increase linearly with the time since the dated event; and (3) intrusions often occur from events outside the period being asked about, but such intrusions do not come from events that have not yet occurred. In Experiment 1, we found that recall for colloquia fell markedly over a 2-year interval, the magnitude of errors in psychologists' dating of the colloquia increased at a rate of .4 days per day of delay, and the direction of the dating error was toward the middle of the interval. In Experiment 2, the model used the retention function and dating errors from the first study to predict the distribution of the actual dates of colloquia recalled as being within a 5-month period. In Experiment 3, the findings of the first study were replicated with colloquia given by, instead of for, the subjects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During mitotic cell cycles, DNA experiences many types of endogenous and exogenous damaging agents that could potentially cause double strand breaks (DSB). In S. cerevisiae, DSBs are primarily repaired by mitotic recombination and as a result, could lead to loss-of-heterozygosity (LOH). Genetic recombination can happen in both meiosis and mitosis. While genome-wide distribution of meiotic recombination events has been intensively studied, mitotic recombination events have not been mapped unbiasedly throughout the genome until recently. Methods for selecting mitotic crossovers and mapping the positions of crossovers have recently been developed in our lab. Our current approach uses a diploid yeast strain that is heterozygous for about 55,000 SNPs, and employs SNP-Microarrays to map LOH events throughout the genome. These methods allow us to examine selected crossovers and unselected mitotic recombination events (crossover, noncrossover and BIR) at about 1 kb resolution across the genome. Using this method, we generated maps of spontaneous and UV-induced LOH events. In this study, we explore machine learning and variable selection techniques to build a predictive model for where the LOH events occur in the genome.

Randomly from the yeast genome, we simulated control tracts resembling the LOH tracts in terms of tract lengths and locations with respect to single-nucleotide-polymorphism positions. We then extracted roughly 1,100 features such as base compositions, histone modifications, presence of tandem repeats etc. and train classifiers to distinguish control tracts and LOH tracts. We found interesting features of good predictive values. We also found that with the current repertoire of features, the prediction is generally better for spontaneous LOH events than UV-induced LOH events.