6 resultados para 860[82].07[Alvarez]
em Duke University
Resumo:
Described here is a mass spectrometry-based screening assay for the detection of protein-ligand binding interactions in multicomponent protein mixtures. The assay utilizes an oxidation labeling protocol that involves using hydrogen peroxide to selectively oxidize methionine residues in proteins in order to probe the solvent accessibility of these residues as a function of temperature. The extent to which methionine residues in a protein are oxidized after specified reaction times at a range of temperatures is determined in a MALDI analysis of the intact proteins and/or an LC-MS analysis of tryptic peptide fragments generated after the oxidation reaction is quenched. Ultimately, the mass spectral data is used to construct thermal denaturation curves for the detected proteins. In this proof-of-principle work, the protocol is applied to a four-protein model mixture comprised of ubiquitin, ribonuclease A (RNaseA), cyclophilin A (CypA), and bovine carbonic anhydrase II (BCAII). The new protocol's ability to detect protein-ligand binding interactions by comparing thermal denaturation data obtained in the absence and in the presence of ligand is demonstrated using cyclosporin A (CsA) as a test ligand. The known binding interaction between CsA and CypA was detected using both the MALDI- and LC-MS-based readouts described here.
Resumo:
We propose a new approach to the fermion sign problem in systems where there is a coupling U such that when it is infinite the fermions are paired into bosons, and there is no fermion permutation sign to worry about. We argue that as U becomes finite, fermions are liberated but are naturally confined to regions which we refer to as fermion bags. The fermion sign problem is then confined to these bags and may be solved using the determinantal trick. In the parameter regime where the fermion bags are small and their typical size does not grow with the system size, construction of Monte Carlo methods that are far more efficient than conventional algorithms should be possible. In the region where the fermion bags grow with system size, the fermion bag approach continues to provide an alternative approach to the problem but may lose its main advantage in terms of efficiency. The fermion bag approach also provides new insights and solutions to sign problems. A natural solution to the "silver blaze problem" also emerges. Using the three-dimensional massless lattice Thirring model as an example, we introduce the fermion bag approach and demonstrate some of these features. We compute the critical exponents at the quantum phase transition and find ν=0.87(2) and η=0.62(2). © 2010 The American Physical Society.
Resumo:
Fatty acids in milk reflect the interplay between species-specific physiological mechanisms and maternal diet. Anthropoid primates (apes, Old and New World monkeys) vary in patterns of growth and development and dietary strategies. Milk fatty acid profiles also are predicted to vary widely. This study investigates milk fatty acid composition of five wild anthropoids (Alouatta palliata, Callithrix jacchus, Gorilla beringei beringei, Leontopithecus rosalia, Macaca sinica) to test the null hypothesis of a generalized anthropoid milk fatty acid composition. Milk from New and Old World monkeys had significantly more 8:0 and 10:0 than milk from apes. The leaf eating species G. b. beringei and A. paliatta had a significantly higher proportion of milk 18:3n-3, a fatty acid found primarily in plant lipids. Mean percent composition of 22:6n-3 was significantly different among monkeys and apes, but was similar to the lowest reported values for human milk. Mountain gorillas were unique among anthropoids in the high proportion of milk 20:4n-6. This seems to be unrelated to requirements of a larger brain and may instead reflect species-specific metabolic processes or an unknown source of this fatty acid in the mountain gorilla diet.
Resumo:
Monoclonal antibodies derived from blood plasma cells of acute HIV-1-infected individuals are predominantly targeted to the HIV Env gp41 and cross-reactive with commensal bacteria. To understand this phenomenon, we examined anti-HIV responses in ileum B cells using recombinant antibody technology and probed their relationship to commensal bacteria. The dominant ileum B cell response was to Env gp41. Remarkably, a majority (82%) of the ileum anti-gp41 antibodies cross-reacted with commensal bacteria, and of those, 43% showed non-HIV-1 antigen polyreactivity. Pyrosequencing revealed shared HIV-1 antibody clonal lineages between ileum and blood. Mutated immunoglobulin G antibodies cross-reactive with both Env gp41 and microbiota could also be isolated from the ileum of HIV-1 uninfected individuals. Thus, the gp41 commensal bacterial antigen cross-reactive antibodies originate in the intestine, and the gp41 Env response in HIV-1 infection can be derived from a preinfection memory B cell pool triggered by commensal bacteria that cross-react with Env.
Resumo:
© 2015 Chinese Nursing Association.Background Although self-management approaches have shown strong evidence of positive outcomes for urinary incontinence prevention and management, few programs have been developed for Korean rural communities. Objectives This pilot study aimed to develop, implement, and evaluate a urinary incontinence self-management program for community-dwelling women aged 55 and older with urinary incontinence in rural South Korea. Methods This study used a one-group pre- post-test design to measure the effects of the intervention using standardized urinary incontinence symptom, knowledge, and attitude measures. Seventeen community-dwelling older women completed weekly 90-min group sessions for 5 weeks. Descriptive statistics and paired t-tests and were used to analyze data. Results The mean of the overall interference on daily life from urine leakage (pre-test: M = 5.76 ± 2.68, post-test: M = 2.29 ± 1.93, t = -4.609, p < 0.001) and the sum of International Consultation on Incontinence Questionnaire scores (pre-test: M = 11.59 ± 3.00, post-test: M = 5.29 ± 3.02, t = -5.881, p < 0.001) indicated significant improvement after the intervention. Improvement was also noted on the mean knowledge (pre-test: M = 19.07 ± 3.34, post-test: M = 23.15 ± 2.60, t = 7.550, p < 0.001) and attitude scores (pre-test: M = 2.64 ± 0.19, post-test: M = 3.08 ± 0.41, t = 5.150, p < 0.001). Weekly assignments were completed 82.4% of the time. Participants showed a high satisfaction level (M = 26.82 ± 1.74, range 22-28) with the group program. Conclusions Implementation of a urinary incontinence self-management program was accompanied by improved outcomes for Korean older women living in rural communities who have scarce resources for urinary incontinence management and treatment. Urinary incontinence self-management education approaches have potential for widespread implementation in nursing practice.
Resumo:
© 2014, Springer-Verlag Berlin Heidelberg.The frequency and severity of extreme events are tightly associated with the variance of precipitation. As climate warms, the acceleration in hydrological cycle is likely to enhance the variance of precipitation across the globe. However, due to the lack of an effective analysis method, the mechanisms responsible for the changes of precipitation variance are poorly understood, especially on regional scales. Our study fills this gap by formulating a variance partition algorithm, which explicitly quantifies the contributions of atmospheric thermodynamics (specific humidity) and dynamics (wind) to the changes in regional-scale precipitation variance. Taking Southeastern (SE) United States (US) summer precipitation as an example, the algorithm is applied to the simulations of current and future climate by phase 5 of Coupled Model Intercomparison Project (CMIP5) models. The analysis suggests that compared to observations, most CMIP5 models (~60 %) tend to underestimate the summer precipitation variance over the SE US during the 1950–1999, primarily due to the errors in the modeled dynamic processes (i.e. large-scale circulation). Among the 18 CMIP5 models analyzed in this study, six of them reasonably simulate SE US summer precipitation variance in the twentieth century and the underlying physical processes; these models are thus applied for mechanistic study of future changes in SE US summer precipitation variance. In the future, the six models collectively project an intensification of SE US summer precipitation variance, resulting from the combined effects of atmospheric thermodynamics and dynamics. Between them, the latter plays a more important role. Specifically, thermodynamics results in more frequent and intensified wet summers, but does not contribute to the projected increase in the frequency and intensity of dry summers. In contrast, atmospheric dynamics explains the projected enhancement in both wet and dry summers, indicating its importance in understanding future climate change over the SE US. The results suggest that the intensified SE US summer precipitation variance is not a purely thermodynamic response to greenhouse gases forcing, and cannot be explained without the contribution of atmospheric dynamics. Our analysis provides important insights to understand the mechanisms of SE US summer precipitation variance change. The algorithm formulated in this study can be easily applied to other regions and seasons to systematically explore the mechanisms responsible for the changes in precipitation extremes in a warming climate.