5 resultados para 860[82]-2.09
em Duke University
Resumo:
We obtain an upper bound on the time available for quantum computation for a given quantum computer and decohering environment with quantum error correction implemented. First, we derive an explicit quantum evolution operator for the logical qubits and show that it has the same form as that for the physical qubits but with a reduced coupling strength to the environment. Using this evolution operator, we find the trace distance between the real and ideal states of the logical qubits in two cases. For a super-Ohmic bath, the trace distance saturates, while for Ohmic or sub-Ohmic baths, there is a finite time before the trace distance exceeds a value set by the user. © 2010 The American Physical Society.
Resumo:
We propose a new approach to the fermion sign problem in systems where there is a coupling U such that when it is infinite the fermions are paired into bosons, and there is no fermion permutation sign to worry about. We argue that as U becomes finite, fermions are liberated but are naturally confined to regions which we refer to as fermion bags. The fermion sign problem is then confined to these bags and may be solved using the determinantal trick. In the parameter regime where the fermion bags are small and their typical size does not grow with the system size, construction of Monte Carlo methods that are far more efficient than conventional algorithms should be possible. In the region where the fermion bags grow with system size, the fermion bag approach continues to provide an alternative approach to the problem but may lose its main advantage in terms of efficiency. The fermion bag approach also provides new insights and solutions to sign problems. A natural solution to the "silver blaze problem" also emerges. Using the three-dimensional massless lattice Thirring model as an example, we introduce the fermion bag approach and demonstrate some of these features. We compute the critical exponents at the quantum phase transition and find ν=0.87(2) and η=0.62(2). © 2010 The American Physical Society.
Resumo:
Using longitudinal data, the present study examined change in midlife neuroticism following trauma exposure. Our primary analyses included 670 participants (M(age) = 60.55; 65.22% male, 99.70% Caucasian) who completed the NEO Personality Inventory at ages 42 and 50 and reported their lifetime exposure to traumatic events approximately 10 years later. No differences in pre- and post-trauma neuroticism scores were found among individuals who experienced all of their lifetime traumas in the interval between the personality assessments. Results were instead consistent with normative age-related declines in neuroticism throughout adulthood. Furthermore, longitudinal changes in neuroticism scores did not differ between individuals with and without histories of midlife trauma exposure. Examination of change in neuroticism following life-threatening traumas yielded a comparable pattern of results. Analysis of facet-level scores largely replicated findings from the domain scores. Overall, our findings suggest that neuroticism does not reliably change following exposure to traumatic events in middle adulthood. Supplemental analyses indicated that individuals exposed to life-threatening traumas in childhood or adolescence reported higher midlife neuroticism than individuals who experienced severe traumas in adulthood. Life-threatening traumatic events encountered early in life may have a more pronounced impact on adulthood personality than recent traumatic events.
Resumo:
Preclinical imaging has a critical role in phenotyping, in drug discovery, and in providing a basic understanding of mechanisms of disease. Translating imaging methods from humans to small animals is not an easy task. The purpose of this work is to review high-resolution computed tomography (CT) also known as micro-CT for small-animal imaging. We present the principles, the technologies, the image quality parameters, and the types of applications. We show that micro-CT can be used to provide not only morphological but also functional information such as cardiac function or vascular permeability. Another way in which micro-CT can be used in the study of both function and anatomy is by combining it with other imaging modalities, such as positron emission tomography or single-photon emission tomography. Compared to other modalities, micro-CT imaging is usually regarded as being able to provide higher throughput at lower cost and higher resolution. The limitations are usually associated with the relatively poor contrast mechanisms and the radiation damage, although the use of novel nanoparticle-based contrast agents and careful design of studies can address these limitations.