3 resultados para 7-GC 6
em Duke University
Resumo:
PURPOSE: The endoplasmic reticulum-associated degradation pathway is responsible for the translocation of misfolded proteins across the endoplasmic reticulum membrane into the cytosol for subsequent degradation by the proteasome. To define the phenotype associated with a novel inherited disorder of cytosolic endoplasmic reticulum-associated degradation pathway dysfunction, we studied a series of eight patients with deficiency of N-glycanase 1. METHODS: Whole-genome, whole-exome, or standard Sanger sequencing techniques were employed. Retrospective chart reviews were performed in order to obtain clinical data. RESULTS: All patients had global developmental delay, a movement disorder, and hypotonia. Other common findings included hypolacrima or alacrima (7/8), elevated liver transaminases (6/7), microcephaly (6/8), diminished reflexes (6/8), hepatocyte cytoplasmic storage material or vacuolization (5/6), and seizures (4/8). The nonsense mutation c.1201A>T (p.R401X) was the most common deleterious allele. CONCLUSION: NGLY1 deficiency is a novel autosomal recessive disorder of the endoplasmic reticulum-associated degradation pathway associated with neurological dysfunction, abnormal tear production, and liver disease. The majority of patients detected to date carry a specific nonsense mutation that appears to be associated with severe disease. The phenotypic spectrum is likely to enlarge as cases with a broader range of mutations are detected.
Resumo:
OBJECTIVES: Identification of patient subpopulations susceptible to develop myocardial infarction (MI) or, conversely, those displaying either intrinsic cardioprotective phenotypes or highly responsive to protective interventions remain high-priority knowledge gaps. We sought to identify novel common genetic variants associated with perioperative MI in patients undergoing coronary artery bypass grafting using genome-wide association methodology. SETTING: 107 secondary and tertiary cardiac surgery centres across the USA. PARTICIPANTS: We conducted a stage I genome-wide association study (GWAS) in 1433 ethnically diverse patients of both genders (112 cases/1321 controls) from the Genetics of Myocardial Adverse Outcomes and Graft Failure (GeneMAGIC) study, and a stage II analysis in an expanded population of 2055 patients (225 cases/1830 controls) combined from the GeneMAGIC and Duke Perioperative Genetics and Safety Outcomes (PEGASUS) studies. Patients undergoing primary non-emergent coronary bypass grafting were included. PRIMARY AND SECONDARY OUTCOME MEASURES: The primary outcome variable was perioperative MI, defined as creatine kinase MB isoenzyme (CK-MB) values ≥10× upper limit of normal during the first postoperative day, and not attributable to preoperative MI. Secondary outcomes included postoperative CK-MB as a quantitative trait, or a dichotomised phenotype based on extreme quartiles of the CK-MB distribution. RESULTS: Following quality control and adjustment for clinical covariates, we identified 521 single nucleotide polymorphisms in the stage I GWAS analysis. Among these, 8 common variants in 3 genes or intergenic regions met p<10(-5) in stage II. A secondary analysis using CK-MB as a quantitative trait (minimum p=1.26×10(-3) for rs609418), or a dichotomised phenotype based on extreme CK-MB values (minimum p=7.72×10(-6) for rs4834703) supported these findings. Pathway analysis revealed that genes harbouring top-scoring variants cluster in pathways of biological relevance to extracellular matrix remodelling, endoplasmic reticulum-to-Golgi transport and inflammation. CONCLUSIONS: Using a two-stage GWAS and pathway analysis, we identified and prioritised several potential susceptibility loci for perioperative MI.
Resumo:
BACKGROUND: RA and CVD both have inflammation as part of the underlying biology. Our objective was to explore the relationships of GlycA, a measure of glycosylated acute phase proteins, with inflammation and cardiometabolic risk in RA, and explore whether these relationships were similar to those for persons without RA. METHODS: Plasma GlycA was determined for 50 individuals with mild-moderate RA disease activity and 39 controls matched for age, gender, and body mass index (BMI). Regression analyses were performed to assess relationships between GlycA and important markers of traditional inflammation and cardio-metabolic health: inflammatory cytokines, disease activity, measures of adiposity and insulin resistance. RESULTS: On average, RA activity was low (DAS-28 = 3.0 ± 1.4). Traditional inflammatory markers, ESR, hsCRP, IL-1β, IL-6, IL-18 and TNF-α were greater in RA versus controls (P < 0.05 for all). GlycA concentrations were significantly elevated in RA versus controls (P = 0.036). In RA, greater GlycA associated with disease activity (DAS-28; RDAS-28 = 0.5) and inflammation (RESR = 0.7, RhsCRP = 0.7, RIL-6 = 0.3: P < 0.05 for all); in BMI-matched controls, these inflammatory associations were absent or weaker (hsCRP), but GlycA was related to IL-18 (RhsCRP = 0.3, RIL-18 = 0.4: P < 0.05). In RA, greater GlycA associated with more total abdominal adiposity and less muscle density (Rabdominal-adiposity = 0.3, Rmuscle-density = -0.3, P < 0.05 for both). In BMI-matched controls, GlycA associated with more cardio-metabolic markers: BMI, waist circumference, adiposity measures and insulin resistance (R = 0.3-0.6, P < 0.05 for all). CONCLUSIONS: GlycA provides an integrated measure of inflammation with contributions from traditional inflammatory markers and cardio-metabolic sources, dominated by inflammatory markers in persons with RA and cardio-metabolic factors in those without.