2 resultados para 551
em Duke University
Resumo:
-Transgenic mouse models have been developed to manipulate beta-adrenergic receptor (betaAR) signal transduction. Although several of these models have altered betaAR subtypes, the specific functional sequelae of betaAR stimulation in murine heart, particularly those of beta2-adrenergic receptor (beta2AR) stimulation, have not been characterized. In the present study, we investigated effects of beta2AR stimulation on contraction, [Ca2+]i transient, and L-type Ca2+ currents (ICa) in single ventricular myocytes isolated from transgenic mice overexpressing human beta2AR (TG4 mice) and wild-type (WT) littermates. Baseline contractility of TG4 heart cells was increased by 3-fold relative to WT controls as a result of the presence of spontaneous beta2AR activation. In contrast, beta2AR stimulation by zinterol or isoproterenol plus a selective beta1-adrenergic receptor (beta1AR) antagonist CGP 20712A failed to enhance the contractility in TG4 myocytes, and more surprisingly, beta2AR stimulation was also ineffective in increasing contractility in WT myocytes. Pertussis toxin (PTX) treatment fully rescued the ICa, [Ca2+]i, and contractile responses to beta2AR agonists in both WT and TG4 cells. The PTX-rescued murine cardiac beta2AR response is mediated by cAMP-dependent mechanisms, because it was totally blocked by the inhibitory cAMP analog Rp-cAMPS. These results suggest that PTX-sensitive G proteins are responsible for the unresponsiveness of mouse heart to agonist-induced beta2AR stimulation. This was further corroborated by an increased incorporation of the photoreactive GTP analog [gamma-32P]GTP azidoanilide into alpha subunits of Gi2 and Gi3 after beta2AR stimulation by zinterol or isoproterenol plus the beta1AR blocker CGP 20712A. This effect to activate Gi proteins was abolished by a selective beta2AR blocker ICI 118,551 or by PTX treatment. Thus, we conclude that (1) beta2ARs in murine cardiac myocytes couple to concurrent Gs and Gi signaling, resulting in null inotropic response, unless the Gi signaling is inhibited; (2) as a special case, the lack of cardiac contractile response to beta2AR agonists in TG4 mice is not due to a saturation of cell contractility or of the cAMP signaling cascade but rather to an activation of beta2AR-coupled Gi proteins; and (3) spontaneous beta2AR activation may differ from agonist-stimulated beta2AR signaling.
Resumo:
BACKGROUND: When the nature and direction of research results affect their chances of publication, a distortion of the evidence base - termed publication bias - results. Despite considerable recent efforts to implement measures to reduce the non-publication of trials, publication bias is still a major problem in medical research. The objective of our study was to identify barriers to and facilitators of interventions to prevent or reduce publication bias. METHODS: We systematically reviewed the scholarly literature and extracted data from articles. Further, we performed semi-structured interviews with stakeholders. We performed an inductive thematic analysis to identify barriers to and facilitators of interventions to counter publication bias. RESULTS: The systematic review identified 39 articles. Thirty-four of 89 invited interview partners agreed to be interviewed. We clustered interventions into four categories: prospective trial registration, incentives for reporting in peer-reviewed journals or research reports, public availability of individual patient-level data, and peer-review/editorial processes. Barriers we identified included economic and personal interests, lack of financial resources for a global comprehensive trial registry, and different legal systems. Facilitators identified included: raising awareness of the effects of publication bias, providing incentives to make data publically available, and implementing laws to enforce prospective registration and reporting of clinical trial results. CONCLUSIONS: Publication bias is a complex problem that reflects the complex system in which it occurs. The cooperation amongst stakeholders to increase public awareness of the problem, better tailoring of incentives to publish, and ultimately legislative regulations have the greatest potential for reducing publication bias.