3 resultados para 509
em Duke University
Resumo:
We conducted a pilot study on 10 patients undergoing general surgery to test the feasibility of diffuse reflectance spectroscopy in the visible wavelength range as a noninvasive monitoring tool for blood loss during surgery. Ratios of raw diffuse reflectance at wavelength pairs were tested as a first-pass for estimating hemoglobin concentration. Ratios can be calculated easily and rapidly with limited post-processing, and so this can be considered a near real-time monitoring device. We found the best hemoglobin correlations were when ratios at isosbestic points of oxy- and deoxyhemoglobin were used, specifically 529/500 nm. Baseline subtraction improved correlations, specifically at 520/509 nm. These results demonstrate proof-of-concept for the ability of this noninvasive device to monitor hemoglobin concentration changes due to surgical blood loss. The 529/500 nm ratio also appears to account for variations in probe pressure, as determined from measurements on two volunteers.
Resumo:
We introduce a dynamic directional model (DDM) for studying brain effective connectivity based on intracranial electrocorticographic (ECoG) time series. The DDM consists of two parts: a set of differential equations describing neuronal activity of brain components (state equations), and observation equations linking the underlying neuronal states to observed data. When applied to functional MRI or EEG data, DDMs usually have complex formulations and thus can accommodate only a few regions, due to limitations in spatial resolution and/or temporal resolution of these imaging modalities. In contrast, we formulate our model in the context of ECoG data. The combined high temporal and spatial resolution of ECoG data result in a much simpler DDM, allowing investigation of complex connections between many regions. To identify functionally segregated sub-networks, a form of biologically economical brain networks, we propose the Potts model for the DDM parameters. The neuronal states of brain components are represented by cubic spline bases and the parameters are estimated by minimizing a log-likelihood criterion that combines the state and observation equations. The Potts model is converted to the Potts penalty in the penalized regression approach to achieve sparsity in parameter estimation, for which a fast iterative algorithm is developed. The methods are applied to an auditory ECoG dataset.