3 resultados para 3D object detection
em Duke University
Resumo:
This work explores the use of statistical methods in describing and estimating camera poses, as well as the information feedback loop between camera pose and object detection. Surging development in robotics and computer vision has pushed the need for algorithms that infer, understand, and utilize information about the position and orientation of the sensor platforms when observing and/or interacting with their environment.
The first contribution of this thesis is the development of a set of statistical tools for representing and estimating the uncertainty in object poses. A distribution for representing the joint uncertainty over multiple object positions and orientations is described, called the mirrored normal-Bingham distribution. This distribution generalizes both the normal distribution in Euclidean space, and the Bingham distribution on the unit hypersphere. It is shown to inherit many of the convenient properties of these special cases: it is the maximum-entropy distribution with fixed second moment, and there is a generalized Laplace approximation whose result is the mirrored normal-Bingham distribution. This distribution and approximation method are demonstrated by deriving the analytical approximation to the wrapped-normal distribution. Further, it is shown how these tools can be used to represent the uncertainty in the result of a bundle adjustment problem.
Another application of these methods is illustrated as part of a novel camera pose estimation algorithm based on object detections. The autocalibration task is formulated as a bundle adjustment problem using prior distributions over the 3D points to enforce the objects' structure and their relationship with the scene geometry. This framework is very flexible and enables the use of off-the-shelf computational tools to solve specialized autocalibration problems. Its performance is evaluated using a pedestrian detector to provide head and foot location observations, and it proves much faster and potentially more accurate than existing methods.
Finally, the information feedback loop between object detection and camera pose estimation is closed by utilizing camera pose information to improve object detection in scenarios with significant perspective warping. Methods are presented that allow the inverse perspective mapping traditionally applied to images to be applied instead to features computed from those images. For the special case of HOG-like features, which are used by many modern object detection systems, these methods are shown to provide substantial performance benefits over unadapted detectors while achieving real-time frame rates, orders of magnitude faster than comparable image warping methods.
The statistical tools and algorithms presented here are especially promising for mobile cameras, providing the ability to autocalibrate and adapt to the camera pose in real time. In addition, these methods have wide-ranging potential applications in diverse areas of computer vision, robotics, and imaging.
Resumo:
Current state of the art techniques for landmine detection in ground penetrating radar (GPR) utilize statistical methods to identify characteristics of a landmine response. This research makes use of 2-D slices of data in which subsurface landmine responses have hyperbolic shapes. Various methods from the field of visual image processing are adapted to the 2-D GPR data, producing superior landmine detection results. This research goes on to develop a physics-based GPR augmentation method motivated by current advances in visual object detection. This GPR specific augmentation is used to mitigate issues caused by insufficient training sets. This work shows that augmentation improves detection performance under training conditions that are normally very difficult. Finally, this work introduces the use of convolutional neural networks as a method to learn feature extraction parameters. These learned convolutional features outperform hand-designed features in GPR detection tasks. This work presents a number of methods, both borrowed from and motivated by the substantial work in visual image processing. The methods developed and presented in this work show an improvement in overall detection performance and introduce a method to improve the robustness of statistical classification.
Resumo:
Head motion during a Positron Emission Tomography (PET) brain scan can considerably degrade image quality. External motion-tracking devices have proven successful in minimizing this effect, but the associated time, maintenance, and workflow changes inhibit their widespread clinical use. List-mode PET acquisition allows for the retroactive analysis of coincidence events on any time scale throughout a scan, and therefore potentially offers a data-driven motion detection and characterization technique. An algorithm was developed to parse list-mode data, divide the full acquisition into short scan intervals, and calculate the line-of-response (LOR) midpoint average for each interval. These LOR midpoint averages, known as “radioactivity centroids,” were presumed to represent the center of the radioactivity distribution in the scanner, and it was thought that changes in this metric over time would correspond to intra-scan motion.
Several scans were taken of the 3D Hoffman brain phantom on a GE Discovery IQ PET/CT scanner to test the ability of the radioactivity to indicate intra-scan motion. Each scan incrementally surveyed motion in a different degree of freedom (2 translational and 2 rotational). The radioactivity centroids calculated from these scans correlated linearly to phantom positions/orientations. Centroid measurements over 1-second intervals performed on scans with ~1mCi of activity in the center of the field of view had standard deviations of 0.026 cm in the x- and y-dimensions and 0.020 cm in the z-dimension, which demonstrates high precision and repeatability in this metric. Radioactivity centroids are thus shown to successfully represent discrete motions on the submillimeter scale. It is also shown that while the radioactivity centroid can precisely indicate the amount of motion during an acquisition, it fails to distinguish what type of motion occurred.