4 resultados para 380304 Neurocognitive Patterns and Neural Networks

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Posttraumatic stress disorder (PTSD) affects the functional recruitment and connectivity between neural regions during autobiographical memory (AM) retrieval that overlap with default and control networks. Whether such univariate changes relate to potential differences in the contributions of the large-scale neural networks supporting cognition in PTSD is unknown. In the present functional MRI study, we employed independent-component analysis to examine the influence of the engagement of neural networks during the recall of personal memories in a PTSD group (15 participants) as compared to non-trauma-exposed healthy controls (14 participants). We found that the PTSD group recruited similar neural networks when compared to the controls during AM recall, including default-network subsystems and control networks, but group differences emerged in the spatial and temporal characteristics of these networks. First, we found spatial differences in the contributions of the anterior and posterior midline across the networks, and of the amygdala in particular, for the medial temporal subsystem of the default network. Second, we found temporal differences within the medial prefrontal subsystem of the default network, with less temporal coupling of this network during AM retrieval in PTSD relative to controls. These findings suggest that the spatial and temporal characteristics of the default and control networks potentially differ in a PTSD group versus healthy controls and contribute to altered recall of personal memory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

How do separate neural networks interact to support complex cognitive processes such as remembrance of the personal past? Autobiographical memory (AM) retrieval recruits a consistent pattern of activation that potentially comprises multiple neural networks. However, it is unclear how such large-scale neural networks interact and are modulated by properties of the memory retrieval process. In the present functional MRI (fMRI) study, we combined independent component analysis (ICA) and dynamic causal modeling (DCM) to understand the neural networks supporting AM retrieval. ICA revealed four task-related components consistent with the previous literature: 1) medial prefrontal cortex (PFC) network, associated with self-referential processes, 2) medial temporal lobe (MTL) network, associated with memory, 3) frontoparietal network, associated with strategic search, and 4) cingulooperculum network, associated with goal maintenance. DCM analysis revealed that the medial PFC network drove activation within the system, consistent with the importance of this network to AM retrieval. Additionally, memory accessibility and recollection uniquely altered connectivity between these neural networks. Recollection modulated the influence of the medial PFC on the MTL network during elaboration, suggesting that greater connectivity among subsystems of the default network supports greater re-experience. In contrast, memory accessibility modulated the influence of frontoparietal and MTL networks on the medial PFC network, suggesting that ease of retrieval involves greater fluency among the multiple networks contributing to AM. These results show the integration between neural networks supporting AM retrieval and the modulation of network connectivity by behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

© 2015 Young, Smith, Coutlee and Huettel.Individuals with autistic spectrum disorders exhibit distinct personality traits linked to attentional, social, and affective functions, and those traits are expressed with varying levels of severity in the neurotypical and subclinical population. Variation in autistic traits has been linked to reduced functional and structural connectivity (i.e., underconnectivity, or reduced synchrony) with neural networks modulated by attentional, social, and affective functions. Yet, it remains unclear whether reduced synchrony between these neural networks contributes to autistic traits. To investigate this issue, we used functional magnetic resonance imaging to record brain activation while neurotypical participants who varied in their subclinical scores on the Autism-Spectrum Quotient (AQ) viewed alternating blocks of social and nonsocial stimuli (i.e., images of faces and of landscape scenes). We used independent component analysis (ICA) combined with a spatiotemporal regression to quantify synchrony between neural networks. Our results indicated that decreased synchrony between the executive control network (ECN) and a face-scene network (FSN) predicted higher scores on the AQ. This relationship was not explained by individual differences in head motion, preferences for faces, or personality variables related to social cognition. Our findings build on clinical reports by demonstrating that reduced synchrony between distinct neural networks contributes to a range of subclinical autistic traits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Macrosystems ecology is the study of diverse ecological phenomena at the scale of regions to continents and their interactions with phenomena at other scales. This emerging subdiscipline addresses ecological questions and environmental problems at these broad scales. Here, we describe this new field, show how it relates to modern ecological study, and highlight opportunities that stem from taking a macrosystems perspective. We present a hierarchical framework for investigating macrosystems at any level of ecological organization and in relation to broader and finer scales. Building on well-established theory and concepts from other subdisciplines of ecology, we identify feedbacks, linkages among distant regions, and interactions that cross scales of space and time as the most likely sources of unexpected and novel behaviors in macrosystems. We present three examples that highlight the importance of this multiscaled systems perspective for understanding the ecology of regions to continents. © The Ecological Society of America.