2 resultados para 3 CLASSIC CRITERIA

em Duke University


Relevância:

80.00% 80.00%

Publicador:

Resumo:

As complex radiotherapy techniques become more readily-practiced, comprehensive 3D dosimetry is a growing necessity for advanced quality assurance. However, clinical implementation has been impeded by a wide variety of factors, including the expense of dedicated optical dosimeter readout tools, high operational costs, and the overall difficulty of use. To address these issues, a novel dry-tank optical CT scanner was designed for PRESAGE 3D dosimeter readout, relying on 3D printed components and omitting costly parts from preceding optical scanners. This work details the design, prototyping, and basic commissioning of the Duke Integrated-lens Optical Scanner (DIOS).

The convex scanning geometry was designed in ScanSim, an in-house Monte Carlo optical ray-tracing simulation. ScanSim parameters were used to build a 3D rendering of a convex ‘solid tank’ for optical-CT, which is capable of collimating a point light source into telecentric geometry without significant quantities of refractive-index matched fluid. The model was 3D printed, processed, and converted into a negative mold via rubber casting to produce a transparent polyurethane scanning tank. The DIOS was assembled with the solid tank, a 3W red LED light source, a computer-controlled rotation stage, and a 12-bit CCD camera. Initial optical phantom studies show negligible spatial inaccuracies in 2D projection images and 3D tomographic reconstructions. A PRESAGE 3D dose measurement for a 4-field box treatment plan from Eclipse shows 95% of voxels passing gamma analysis at 3%/3mm criteria. Gamma analysis between tomographic images of the same dosimeter in the DIOS and DLOS systems show 93.1% agreement at 5%/1mm criteria. From this initial study, the DIOS has demonstrated promise as an economically-viable optical-CT scanner. However, further improvements will be necessary to fully develop this system into an accurate and reliable tool for advanced QA.

Pre-clinical animal studies are used as a conventional means of translational research, as a midpoint between in-vitro cell studies and clinical implementation. However, modern small animal radiotherapy platforms are primitive in comparison with conventional linear accelerators. This work also investigates a series of 3D printed tools to expand the treatment capabilities of the X-RAD 225Cx orthovoltage irradiator, and applies them to a feasibility study of hippocampal avoidance in rodent whole-brain radiotherapy.

As an alternative material to lead, a novel 3D-printable tungsten-composite ABS plastic, GMASS, was tested to create precisely-shaped blocks. Film studies show virtually all primary radiation at 225 kVp can be attenuated by GMASS blocks of 0.5cm thickness. A state-of-the-art software, BlockGen, was used to create custom hippocampus-shaped blocks from medical image data, for any possible axial treatment field arrangement. A custom 3D printed bite block was developed to immobilize and position a supine rat for optimal hippocampal conformity. An immobilized rat CT with digitally-inserted blocks was imported into the SmART-Plan Monte-Carlo simulation software to determine the optimal beam arrangement. Protocols with 4 and 7 equally-spaced fields were considered as viable treatment options, featuring improved hippocampal conformity and whole-brain coverage when compared to prior lateral-opposed protocols. Custom rodent-morphic PRESAGE dosimeters were developed to accurately reflect these treatment scenarios, and a 3D dosimetry study was performed to confirm the SmART-Plan simulations. Measured doses indicate significant hippocampal sparing and moderate whole-brain coverage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The World Health Organization (WHO 2003) recognizes 3 endometrial stromal neoplasms: noninvasive endometrial stromal nodule and the 2 invasive neoplasms, endometrial stromal sarcoma (ESS), low grade and undifferentiated endometrial sarcoma (UES). It is important to note that the WHO 2003 does not define moderate atypia (an important differentiating diagnostic criterion for ESS, low grade and UES), nor does it discuss its significance. Moreover, studies on reproducibility and additional prognostic value of other diagnostic features in large are lacking. Using strict definitions, we analyzed the agreement between routine and expert-review necrosis and nuclear atypia in 91 invasive endometrial stromal neoplasias (IESN). The overall 5-year and 10-year recurrence-free survival rate estimates of the 91 IESN patients were 82% and 75%, respectively. Necrosis was well reproducible, and nuclear atypia was reasonably well reproducible. The 10-year recurrence-free survival rates for necrosis absent/inconspicuous versus prominent were 89% and 45% (P<0.001) and those for review-confirmed none/mild, moderate, severe atypia were 90%, 30%, and <20% (P<0.00001). Therefore, cases with moderate/severe atypia should be grouped together. Nuclear atypia and necrosis had independent prognostic values (Cox regression). Once these features were taken into account, no other feature had an independent additional prognostic value, including mitotic count. Using "none/mild atypia, necrosis absent/inconspicuous" as ESS, low grade versus "moderate/severe atypia present or necrosis present" as UES resulted in 68 ESS, low grade and 23 UES cases with disease-specific overall mortality-free survival of 99% versus 48% (P<0.00001, hazard ratio=45.4). When strictly defined microscopic criteria are used, the WHO 2003 diagnoses of ESS, low grade and UES are well reproducible and prognostically strong. © 2012 International Society of Gynecological Pathologists.