2 resultados para 20S-15N
em Duke University
Resumo:
This paper demonstrates the use of stable isotope ratios of carbon and nitrogen in animal tissue for indicating aspects of species behavioral strategy. We analyzed hair from individuals representing four species of New World monkeys (Alouatta palliata, the mantled howler; Ateles geoffroyi, the spider monkey; Cebus capucinus, the capuchin; and Brachyteles arachnoides, the woolly-spider monkey or muriqui) for delta 13C and delta 15N using previously developed methods. There are no significant differences in either carbon or nitrogen ratios between sexes, sampling year, or year of analysis. Seasonal differences in delta 13C reached a low level of significance but do not affect general patterns. Variation within species was similar to that recorded previously within single individuals. The omega 13C data show a bimodal distribution with significant difference between the means. The two monkey populations living in an evergreen forest were similar to each other and different from the other two monkey populations that inhabited dry, deciduous forests. This bimodal distribution is independent of any particular species' diet and reflects the level of leaf cover in the two types of forest. The delta 15N data display three significantly different modes. The omnivorous capuchins were most positive reflecting a trophic level offset. The spider monkeys and the muriquis were similar to one another and significantly more positive than the howlers. This distribution among totally herbivorous species correlates with the ingestion of legumes by the howler monkey population. In combination, these data indicate that museum-curated primate material can be analyzed to yield information on forest cover and diet in populations and species lacking behavioral data.
Resumo:
Aquifer denitrification is among the most poorly constrained fluxes in global and regional nitrogen budgets. The few direct measurements of denitrification in groundwaters provide limited information about its spatial and temporal variability, particularly at the scale of whole aquifers. Uncertainty in estimates of denitrification may also lead to underestimates of its effect on isotopic signatures of inorganic N, and thereby confound the inference of N source from these data. In this study, our objectives are to quantify the magnitude and variability of denitrification in the Upper Floridan Aquifer (UFA) and evaluate its effect on N isotopic signatures at the regional scale. Using dual noble gas tracers (Ne, Ar) to generate physical predictions of N2 gas concentrations for 112 observations from 61 UFA springs, we show that excess (i.e. denitrification-derived) N2 is highly variable in space and inversely correlated with dissolved oxygen (O2). Negative relationships between O2 and δ15N NO3 across a larger dataset of 113 springs, well-constrained isotopic fractionation coefficients, and strong 15N:18O covariation further support inferences of denitrification in this uniquely organic-matter-poor system. Despite relatively low average rates, denitrification accounted for 32 % of estimated aquifer N inputs across all sampled UFA springs. Back-calculations of source δ15N NO3 based on denitrification progression suggest that isotopically-enriched nitrate (NO3-) in many springs of the UFA reflects groundwater denitrification rather than urban- or animal-derived inputs. © Author(s) 2012.