2 resultados para 2 Forms
em Duke University
Resumo:
Every closed, oriented, real analytic Riemannian 3-manifold can be isometrically embedded as a special Lagrangian submanifold of a Calabi-Yau 3-fold, even as the real locus of an antiholomorphic, isometric involution. Every closed, oriented, real analytic Riemannian 4-manifold whose bundle of self-dual 2-forms is trivial can be isometrically embedded as a coassociative submanifold in a G_2-manifold, even as the fixed locus of an anti-G_2 involution. These results, when coupled with McLean's analysis of the moduli spaces of such calibrated submanifolds, yield a plentiful supply of examples of compact calibrated submanifolds with nontrivial deformation spaces.
Resumo:
The purpose of this article is to classify the real hypersurfaces in complex space forms of dimension 2 that are both Levi-flat and minimal. The main results are as follows: When the curvature of the complex space form is nonzero, there is a 1-parameter family of such hypersurfaces. Specifically, for each one-parameter subgroup of the isometry group of the complex space form, there is an essentially unique example that is invariant under this one-parameter subgroup. On the other hand, when the curvature of the space form is zero, i.e., when the space form is complex 2-space with its standard flat metric, there is an additional `exceptional' example that has no continuous symmetries but is invariant under a lattice of translations. Up to isometry and homothety, this is the unique example with no continuous symmetries.