2 resultados para 1995_03302353 TM-61 4502108

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The incidence and epidemiology of invasive fungal infections (IFIs), a leading cause of death among hematopoeitic stem cell transplant (HSCT) recipients, are derived mainly from single-institution retrospective studies. METHODS: The Transplant Associated Infections Surveillance Network, a network of 23 US transplant centers, prospectively enrolled HSCT recipients with proven and probable IFIs occurring between March 2001 and March 2006. We collected denominator data on all HSCTs preformed at each site and clinical, diagnostic, and outcome information for each IFI case. To estimate trends in IFI, we calculated the 12-month cumulative incidence among 9 sequential subcohorts. RESULTS: We identified 983 IFIs among 875 HSCT recipients. The median age of the patients was 49 years; 60% were male. Invasive aspergillosis (43%), invasive candidiasis (28%), and zygomycosis (8%) were the most common IFIs. Fifty-nine percent and 61% of IFIs were recognized within 60 days of neutropenia and graft-versus-host disease, respectively. Median onset of candidiasis and aspergillosis after HSCT was 61 days and 99 days, respectively. Within a cohort of 16,200 HSCT recipients who received their first transplants between March 2001 and September 2005 and were followed up through March 2006, we identified 718 IFIs in 639 persons. Twelve-month cumulative incidences, based on the first IFI, were 7.7 cases per 100 transplants for matched unrelated allogeneic, 8.1 cases per 100 transplants for mismatched-related allogeneic, 5.8 cases per 100 transplants for matched-related allogeneic, and 1.2 cases per 100 transplants for autologous HSCT. CONCLUSIONS: In this national prospective surveillance study of IFIs in HSCT recipients, the cumulative incidence was highest for aspergillosis, followed by candidiasis. Understanding the epidemiologic trends and burden of IFIs may lead to improved management strategies and study design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While genome-wide gene expression data are generated at an increasing rate, the repertoire of approaches for pattern discovery in these data is still limited. Identifying subtle patterns of interest in large amounts of data (tens of thousands of profiles) associated with a certain level of noise remains a challenge. A microarray time series was recently generated to study the transcriptional program of the mouse segmentation clock, a biological oscillator associated with the periodic formation of the segments of the body axis. A method related to Fourier analysis, the Lomb-Scargle periodogram, was used to detect periodic profiles in the dataset, leading to the identification of a novel set of cyclic genes associated with the segmentation clock. Here, we applied to the same microarray time series dataset four distinct mathematical methods to identify significant patterns in gene expression profiles. These methods are called: Phase consistency, Address reduction, Cyclohedron test and Stable persistence, and are based on different conceptual frameworks that are either hypothesis- or data-driven. Some of the methods, unlike Fourier transforms, are not dependent on the assumption of periodicity of the pattern of interest. Remarkably, these methods identified blindly the expression profiles of known cyclic genes as the most significant patterns in the dataset. Many candidate genes predicted by more than one approach appeared to be true positive cyclic genes and will be of particular interest for future research. In addition, these methods predicted novel candidate cyclic genes that were consistent with previous biological knowledge and experimental validation in mouse embryos. Our results demonstrate the utility of these novel pattern detection strategies, notably for detection of periodic profiles, and suggest that combining several distinct mathematical approaches to analyze microarray datasets is a valuable strategy for identifying genes that exhibit novel, interesting transcriptional patterns.