4 resultados para 13077-026
em Duke University
Resumo:
Consecutive febrile admissions were enrolled at two hospitals in Moshi, Tanzania. Confirmed acute Chikungunya virus (CHIKV), Dengue virus (DENV), and flavivirus infection were defined as a positive polymerase chain reaction (PCR) result. Presumptive acute DENV infection was defined as a positive anti-DENV immunoglobulin M (IgM) enzyme-linked immunsorbent assay (ELISA) result, and prior flavivirus exposure was defined as a positive anti-DENV IgG ELISA result. Among 870 participants, PCR testing was performed on 700 (80.5%). Of these, 55 (7.9%) had confirmed acute CHIKV infection, whereas no participants had confirmed acute DENV or flavivirus infection. Anti-DENV IgM serologic testing was performed for 747 (85.9%) participants, and of these 71 (9.5%) had presumptive acute DENV infection. Anti-DENV IgG serologic testing was performed for 751 (86.3%) participants, and of these 80 (10.7%) had prior flavivirus exposure. CHIKV infection was more common among infants and children than adults and adolescents (odds ratio [OR] 1.9, P = 0.026) and among HIV-infected patients with severe immunosuppression (OR 10.5, P = 0.007). CHIKV infection is an important but unrecognized cause of febrile illness in northern Tanzania. DENV or other closely related flaviviruses are likely also circulating.
Resumo:
Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) provide a promising source for cell therapy and drug screening. Several high-yield protocols exist for hESC-CM production; however, methods to significantly advance hESC-CM maturation are still lacking. Building on our previous experience with mouse ESC-CMs, we investigated the effects of 3-dimensional (3D) tissue-engineered culture environment and cardiomyocyte purity on structural and functional maturation of hESC-CMs. 2D monolayer and 3D fibrin-based cardiac patch cultures were generated using dissociated cells from differentiated Hes2 embryoid bodies containing varying percentage (48-90%) of CD172a (SIRPA)-positive cardiomyocytes. hESC-CMs within the patch were aligned uniformly by locally controlling the direction of passive tension. Compared to hESC-CMs in age (2 weeks) and purity (48-65%) matched 2D monolayers, hESC-CMs in 3D patches exhibited significantly higher conduction velocities (CVs), longer sarcomeres (2.09 ± 0.02 vs. 1.77 ± 0.01 μm), and enhanced expression of genes involved in cardiac contractile function, including cTnT, αMHC, CASQ2 and SERCA2. The CVs in cardiac patches increased with cardiomyocyte purity, reaching 25.1 cm/s in patches constructed with 90% hESC-CMs. Maximum contractile force amplitudes and active stresses of cardiac patches averaged to 3.0 ± 1.1 mN and 11.8 ± 4.5 mN/mm(2), respectively. Moreover, contractile force per input cardiomyocyte averaged to 5.7 ± 1.1 nN/cell and showed a negative correlation with hESC-CM purity. Finally, patches exhibited significant positive inotropy with isoproterenol administration (1.7 ± 0.3-fold force increase, EC50 = 95.1 nm). These results demonstrate highly advanced levels of hESC-CM maturation after 2 weeks of 3D cardiac patch culture and carry important implications for future drug development and cell therapy studies.
Resumo:
Experiments that demonstrated a role for the substantia nigra in eye movements have played an important role in our understanding of the function of the basal ganglia in behavior more broadly. In this review we explore more recent experiments that extend the role of the substantia nigra pars reticulata from a simple gate for eye movements to include a role in cognitive processes for eye movements. We review recent evidence suggesting that basal ganglia nuclei beyond the substantia nigra may also play a role in eye movements and the cognitive events leading up to the production of eye movements. We close by pointing out some unresolved questions in our understanding of the relationship of basal ganglia nuclei and eye movements.
Resumo:
Recent investigation has identified association of IL-12p40 blood levels with melanoma recurrence and patient survival. No studies have investigated associations of single-nucleotide polymorphisms (SNPs) with melanoma patient IL-12p40 blood levels or their potential contributions to melanoma susceptibility or patient outcome. In the current study, 818,237 SNPs were available for 1,804 melanoma cases and 1,026 controls. IL-12p40 blood levels were assessed among 573 cases (discovery), 249 cases (case validation), and 299 controls (control validation). SNPs were evaluated for association with log[IL-12p40] levels in the discovery data set and replicated in two validation data sets, and significant SNPs were assessed for association with melanoma susceptibility and patient outcomes. The most significant SNP associated with log[IL-12p40] was in the IL-12B gene region (rs6897260, combined P=9.26 × 10(-38)); this single variant explained 13.1% of variability in log[IL-12p40]. The most significant SNP in EBF1 was rs6895454 (combined P=2.24 × 10(-9)). A marker in IL12B was associated with melanoma susceptibility (rs3213119, multivariate P=0.0499; OR=1.50, 95% CI 1.00-2.24), whereas a marker in EBF1 was associated with melanoma-specific survival in advanced-stage patients (rs10515789, multivariate P=0.02; HR=1.93, 95% CI 1.11-3.35). Both EBF1 and IL12B strongly regulate IL-12p40 blood levels, and IL-12p40 polymorphisms may contribute to melanoma susceptibility and influence patient outcome.