4 resultados para 1-DIMENSIONAL CHAIN

em Duke University


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the presence of a chemical potential, the physics of level crossings leads to singularities at zero temperature, even when the spatial volume is finite. These singularities are smoothed out at a finite temperature but leave behind nontrivial finite size effects which must be understood in order to extract thermodynamic quantities using Monte Carlo methods, particularly close to critical points. We illustrate some of these issues using the classical nonlinear O(2) sigma model with a coupling β and chemical potential μ on a 2+1-dimensional Euclidean lattice. In the conventional formulation this model suffers from a sign problem at nonzero chemical potential and hence cannot be studied with the Wolff cluster algorithm. However, when formulated in terms of the worldline of particles, the sign problem is absent, and the model can be studied efficiently with the "worm algorithm." Using this method we study the finite size effects that arise due to the chemical potential and develop an effective quantum mechanical approach to capture the effects. As a side result we obtain energy levels of up to four particles as a function of the box size and uncover a part of the phase diagram in the (β,μ) plane. © 2010 The American Physical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Highlights of Data Expedition: • Students explored daily observations of local climate data spanning the past 35 years. • Topological Data Analysis, or TDA for short, provides cutting-edge tools for studying the geometry of data in arbitrarily high dimensions. • Using TDA tools, students discovered intrinsic dynamical features of the data and learned how to quantify periodic phenomenon in a time-series. • Since nature invariably produces noisy data which rarely has exact periodicity, students also considered the theoretical basis of almost-periodicity and even invented and tested new mathematical definitions of almost-periodic functions. Summary The dataset we used for this data expedition comes from the Global Historical Climatology Network. “GHCN (Global Historical Climatology Network)-Daily is an integrated database of daily climate summaries from land surface stations across the globe.” Source: https://www.ncdc.noaa.gov/oa/climate/ghcn-daily/ We focused on the daily maximum and minimum temperatures from January 1, 1980 to April 1, 2015 collected from RDU International Airport. Through a guided series of exercises designed to be performed in Matlab, students explore these time-series, initially by direct visualization and basic statistical techniques. Then students are guided through a special sliding-window construction which transforms a time-series into a high-dimensional geometric curve. These high-dimensional curves can be visualized by projecting down to lower dimensions as in the figure below (Figure 1), however, our focus here was to use persistent homology to directly study the high-dimensional embedding. The shape of these curves has meaningful information but how one describes the “shape” of data depends on which scale the data is being considered. However, choosing the appropriate scale is rarely an obvious choice. Persistent homology overcomes this obstacle by allowing us to quantitatively study geometric features of the data across multiple-scales. Through this data expedition, students are introduced to numerically computing persistent homology using the rips collapse algorithm and interpreting the results. In the specific context of sliding-window constructions, 1-dimensional persistent homology can reveal the nature of periodic structure in the original data. I created a special technique to study how these high-dimensional sliding-window curves form loops in order to quantify the periodicity. Students are guided through this construction and learn how to visualize and interpret this information. Climate data is extremely complex (as anyone who has suffered from a bad weather prediction can attest) and numerous variables play a role in determining our daily weather and temperatures. This complexity coupled with imperfections of measuring devices results in very noisy data. This causes the annual seasonal periodicity to be far from exact. To this end, I have students explore existing theoretical notions of almost-periodicity and test it on the data. They find that some existing definitions are also inadequate in this context. Hence I challenged them to invent new mathematics by proposing and testing their own definition. These students rose to the challenge and suggested a number of creative definitions. While autocorrelation and spectral methods based on Fourier analysis are often used to explore periodicity, the construction here provides an alternative paradigm to quantify periodic structure in almost-periodic signals using tools from topological data analysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Several human monoclonal antibodies (hmAbs) exhibit relatively potent and broad neutralizing activity against HIV-1, but there has not been much success in using them as potential therapeutics. We have previously hypothesized and demonstrated that small engineered antibodies can target highly conserved epitopes that are not accessible by full-size antibodies. However, their potency has not been comparatively evaluated with known HIV-1-neutralizing hmAbs against large panels of primary isolates. We report here the inhibitory activity of an engineered single chain antibody fragment (scFv), m9, against several panels of primary HIV-1 isolates from group M (clades A-G) using cell-free and cell-associated virus in cell line-based assays. M9 was much more potent than scFv 17b, and more potent than or comparable to the best-characterized broadly neutralizing hmAbs IgG(1) b12, 2G12, 2F5 and 4E10. It also inhibited cell-to-cell transmission of HIV-1 with higher potency than enfuvirtide (T-20, Fuzeon). M9 competed with a sulfated CCR5 N-terminal peptide for binding to gp120-CD4 complex, suggesting an overlapping epitope with the coreceptor binding site. M9 did not react with phosphatidylserine (PS) and cardiolipin (CL), nor did it react with a panel of autoantigens in an antinuclear autoantibody (ANA) assay. We further found that escape mutants resistant to m9 did not emerge in an immune selection assay. These results suggest that m9 is a novel anti-HIV-1 candidate with potential therapeutic or prophylactic properties, and its epitope is a new target for drug or vaccine development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider the problem of variable selection in regression modeling in high-dimensional spaces where there is known structure among the covariates. This is an unconventional variable selection problem for two reasons: (1) The dimension of the covariate space is comparable, and often much larger, than the number of subjects in the study, and (2) the covariate space is highly structured, and in some cases it is desirable to incorporate this structural information in to the model building process. We approach this problem through the Bayesian variable selection framework, where we assume that the covariates lie on an undirected graph and formulate an Ising prior on the model space for incorporating structural information. Certain computational and statistical problems arise that are unique to such high-dimensional, structured settings, the most interesting being the phenomenon of phase transitions. We propose theoretical and computational schemes to mitigate these problems. We illustrate our methods on two different graph structures: the linear chain and the regular graph of degree k. Finally, we use our methods to study a specific application in genomics: the modeling of transcription factor binding sites in DNA sequences. © 2010 American Statistical Association.