13 resultados para 0913 Mechanical Engineering

em Duke University


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This dissertation shows the use of Constructal law to find the relation between the morphing of the system configuration and the improvements in the global performance of the complex flow system. It shows that the better features of both flow and heat transfer architecture can be found and predicted by using the constructal law in energy systems. Chapter 2 shows the effect of flow configuration on the heat transfer performance of a spiral shaped pipe embedded in a cylindrical conducting volume. Several configurations were considered. The optimal spacings between the spiral turns and spire planes exist, such that the volumetric heat transfer rate is maximal. The optimized features of the heat transfer architecture are robust. Chapter 3 shows the heat transfer performance of a helically shaped pipe embedded in a cylindrical conducting volume. It shows that the optimized features of the heat transfer architecture are robust with respect to changes in several physical parameters. Chapter 4 reports analytically the formulas for effective permeability in several configurations of fissured systems, using the closed-form description of tree networks designed to provide flow access. The permeability formulas do not vary much from one tree design to the next, suggesting that similar formulas may apply to naturally fissured porous media with unknown precise details, which occur in natural reservoirs. Chapter 5 illustrates a counterflow heat exchanger consists of two plenums with a core. The results show that the overall flow and thermal resistance are lowest when the core is absent. Overall, the constructal design governs the evolution of flow configuration in nature and energy systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this dissertation, we develop a novel methodology for characterizing and simulating nonstationary, full-field, stochastic turbulent wind fields.

In this new method, nonstationarity is characterized and modeled via temporal coherence, which is quantified in the discrete frequency domain by probability distributions of the differences in phase between adjacent Fourier components.

The empirical distributions of the phase differences can also be extracted from measured data, and the resulting temporal coherence parameters can quantify the occurrence of nonstationarity in empirical wind data.

This dissertation (1) implements temporal coherence in a desktop turbulence simulator, (2) calibrates empirical temporal coherence models for four wind datasets, and (3) quantifies the increase in lifetime wind turbine loads caused by temporal coherence.

The four wind datasets were intentionally chosen from locations around the world so that they had significantly different ambient atmospheric conditions.

The prevalence of temporal coherence and its relationship to other standard wind parameters was modeled through empirical joint distributions (EJDs), which involved fitting marginal distributions and calculating correlations.

EJDs have the added benefit of being able to generate samples of wind parameters that reflect the characteristics of a particular site.

Lastly, to characterize the effect of temporal coherence on design loads, we created four models in the open-source wind turbine simulator FAST based on the \windpact turbines, fit response surfaces to them, and used the response surfaces to calculate lifetime turbine responses to wind fields simulated with and without temporal coherence.

The training data for the response surfaces was generated from exhaustive FAST simulations that were run on the high-performance computing (HPC) facilities at the National Renewable Energy Laboratory.

This process was repeated for wind field parameters drawn from the empirical distributions and for wind samples drawn using the recommended procedure in the wind turbine design standard \iec.

The effect of temporal coherence was calculated as a percent increase in the lifetime load over the base value with no temporal coherence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cancer comprises a collection of diseases, all of which begin with abnormal tissue growth from various stimuli, including (but not limited to): heredity, genetic mutation, exposure to harmful substances, radiation as well as poor dieting and lack of exercise. The early detection of cancer is vital to providing life-saving, therapeutic intervention. However, current methods for detection (e.g., tissue biopsy, endoscopy and medical imaging) often suffer from low patient compliance and an elevated risk of complications in elderly patients. As such, many are looking to “liquid biopsies” for clues into presence and status of cancer due to its minimal invasiveness and ability to provide rich information about the native tumor. In such liquid biopsies, peripheral blood is drawn from patients and is screened for key biomarkers, chiefly circulating tumor cells (CTCs). Capturing, enumerating and analyzing the genetic and metabolomic characteristics of these CTCs may hold the key for guiding doctors to better understand the source of cancer at an earlier stage for more efficacious disease management.

The isolation of CTCs from whole blood, however, remains a significant challenge due to their (i) low abundance, (ii) lack of a universal surface marker and (iii) epithelial-mesenchymal transition that down-regulates common surface markers (e.g., EpCAM), reducing their likelihood of detection via positive selection assays. These factors potentiate the need for an improved cell isolation strategy that can collect CTCs via both positive and negative selection modalities as to avoid the reliance on a single marker, or set of markers, for more accurate enumeration and diagnosis.

The technologies proposed herein offer a unique set of strategies to focus, sort and template cells in three independent microfluidic modules. The first module exploits ultrasonic standing waves and a class of elastomeric particles for the rapid and discriminate sequestration of cells. This type of cell handling holds promise not only in sorting, but also in the isolation of soluble markers from biofluids. The second module contains components to focus (i.e., arrange) cells via forces from acoustic standing waves and separate cells in a high throughput fashion via free-flow magnetophoresis. The third module uses a printed array of micromagnets to capture magnetically labeled cells into well-defined compartments, enabling on-chip staining and single cell analysis. These technologies can operate in standalone formats, or can be adapted to operate with established analytical technologies, such as flow cytometry. A key advantage of these innovations is their ability to process erythrocyte-lysed blood in a rapid (and thus high throughput) fashion. They can process fluids at a variety of concentrations and flow rates, target cells with various immunophenotypes and sort cells via positive (and potentially negative) selection. These technologies are chip-based, fabricated using standard clean room equipment, towards a disposable clinical tool. With further optimization in design and performance, these technologies might aid in the early detection, and potentially treatment, of cancer and various other physical ailments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hydrogen has been called the fuel of the future, and as it’s non- renewable counterparts become scarce the economic viability of hydrogen gains traction. The potential of hydrogen is marked by its high mass specific energy density and wide applicability as a fuel in fuel cell vehicles and homes. However hydrogen’s volume must be reduced via pressurization or liquefaction in order to make it more transportable and volume efficient. Currently the vast majority of industrially produced hydrogen comes from steam reforming of natural gas. This practice yields low-pressure gas which must then be compressed at considerable cost and uses fossil fuels as a feedstock leaving behind harmful CO and CO2 gases as a by-product. The second method used by industry to produce hydrogen gas is low pressure electrolysis. In comparison the electrolysis of water at low pressure can produce pure hydrogen and oxygen gas with no harmful by-products using only water as a feedstock, but it will still need to be compressed before use. Multiple theoretical works agree that high pressure electrolysis could reduce the energy losses due to product gas compression. However these works openly admit that their projected gains are purely theoretical and ignore the practical limitations and resistances of a real life high pressure system. The goal of this work is to experimentally confirm the proposed thermodynamic gains of ultra-high pressure electrolysis in alkaline solution and characterize the behavior of a real life high pressure system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The successful, efficient, and safe turbine design requires a thorough understanding of the underlying physical phenomena. This research investigates the physical understanding and parameters highly correlated to flutter, an aeroelastic instability prevalent among low pressure turbine (LPT) blades in both aircraft engines and power turbines. The modern way of determining whether a certain cascade of LPT blades is susceptible to flutter is through time-expensive computational fluid dynamics (CFD) codes. These codes converge to solution satisfying the Eulerian conservation equations subject to the boundary conditions of a nodal domain consisting fluid and solid wall particles. Most detailed CFD codes are accompanied by cryptic turbulence models, meticulous grid constructions, and elegant boundary condition enforcements all with one goal in mind: determine the sign (and therefore stability) of the aerodynamic damping. The main question being asked by the aeroelastician, ``is it positive or negative?'' This type of thought-process eventually gives rise to a black-box effect, leaving physical understanding behind. Therefore, the first part of this research aims to understand and reveal the physics behind LPT flutter in addition to several related topics including acoustic resonance effects. A percentage of this initial numerical investigation is completed using an influence coefficient approach to study the variation the work-per-cycle contributions of neighboring cascade blades to a reference airfoil. The second part of this research introduces new discoveries regarding the relationship between steady aerodynamic loading and negative aerodynamic damping. Using validated CFD codes as computational wind tunnels, a multitude of low-pressure turbine flutter parameters, such as reduced frequency, mode shape, and interblade phase angle, will be scrutinized across various airfoil geometries and steady operating conditions to reach new design guidelines regarding the influence of steady aerodynamic loading and LPT flutter. Many pressing topics influencing LPT flutter including shocks, their nonlinearity, and three-dimensionality are also addressed along the way. The work is concluded by introducing a useful preliminary design tool that can estimate within seconds the entire aerodynamic damping versus nodal diameter curve for a given three-dimensional cascade.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This dissertation documents the results of a theoretical and numerical study of time dependent storage of energy by melting a phase change material. The heating is provided along invading lines, which change from single-line invasion to tree-shaped invasion. Chapter 2 identifies the special design feature of distributing energy storage in time-dependent fashion on a territory, when the energy flows by fluid flow from a concentrated source to points (users) distributed equidistantly on the area. The challenge in this chapter is to determine the architecture of distributed energy storage. The chief conclusion is that the finite amount of storage material should be distributed proportionally with the distribution of the flow rate of heating agent arriving on the area. The total time needed by the source stream to ‘invade’ the area is cumulative (the sum of the storage times required at each storage site), and depends on the energy distribution paths and the sequence in which the users are served by the source stream. Chapter 3 shows theoretically that the melting process consists of two phases: “invasion” thermal diffusion along the invading line, which is followed by “consolidation” as heat diffuses perpendicularly to the invading line. This chapter also reports the duration of both phases and the evolution of the melt layer around the invading line during the two-dimensional and three-dimensional invasion. It also shows that the amount of melted material increases in time according to a curve shaped as an S. These theoretical predictions are validated by means of numerical simulations in chapter 4. This chapter also shows that the heat transfer rate density increases (i.e., the S curve becomes steeper) as the complexity and number of degrees of freedom of the structure are increased, in accord with the constructal law. The optimal geometric features of the tree structure are detailed in this chapter. Chapter 5 documents a numerical study of time-dependent melting where the heat transfer is convection dominated, unlike in chapter 3 and 4 where the melting is ruled by pure conduction. In accord with constructal design, the search is for effective heat-flow architectures. The volume-constrained improvement of the designs for heat flow begins with assuming the simplest structure, where a single line serves as heat source. Next, the heat source is endowed with freedom to change its shape as it grows. The objective of the numerical simulations is to discover the geometric features that lead to the fastest melting process. The results show that the heat transfer rate density increases as the complexity and number of degrees of freedom of the structure are increased. Furthermore, the angles between heat invasion lines have a minor effect on the global performance compared to other degrees of freedom: number of branching levels, stem length, and branch lengths. The effect of natural convection in the melt zone is documented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The goal of this research was to determine the composition of boron deposits produced by pyrolysis of boron tribromide, and to use the results to (a) determine the experimental conditions (reaction temperature, etc.) necessary to produce alpha-rhombohedral boron and (b) guide the development/refinement of the pyrolysis experiments such that large, high purity crystals of alpha-rhombohedral boron can be produced with consistency. Developing a method for producing large, high purity alpha-rhombohedral boron crystals is of interest because such crystals could potentially be used to achieve an alpha-rhombohedral boron based neutron detector design (a solid-state detector) that could serve as an alternative to existing neutron detector technologies. The supply of neutron detectors in the United States has been hampered for a number of years due to the current shortage of helium-3 (a gas used in many existing neutron detector technologies); the development of alternative neutron detector technology such as an alpha-rhombohedral boron based detector would help provide a more sustainable supply of neutron detectors in this country. In addition, the prospect/concept of an alpha-rhombohedral boron based neutron detector is attractive because it offers the possibility of achieving a design that is smaller, longer life, less power consuming, and potentially more sensitive than existing neutron detectors. The main difficulty associated with creating an alpha-rhombohedral boron based neutron detector is that producing large, high purity crystals of alpha-rhombohedral boron is extremely challenging. Past researchers have successfully made alpha-rhombohedral boron via a number of methods, but no one has developed a method for consistently producing large, high purity crystals. Alpha-rhombohedral boron is difficult to make because it is only stable at temperatures below around 1100-1200 °C, its formation is very sensitive to impurities, and the conditions necessary for its formation are not fully understood or agreed upon in the literature. In this research, the method of pyrolysis of boron tribromide (hydrogen reduction of boron tribromide) was used to deposit boron on a tantalum filament. The goal was to refine this method, or potentially use it in combination with a second method (amorphous boron crystallization), to the point where it is possible to grow large, high purity alpha-rhombohedral boron crystals with consistency. A pyrolysis apparatus was designed and built, and a number of trials were run to determine the conditions (reaction temperature, etc.) necessary for alpha-rhombohedral boron production. This work was focused on the x-ray diffraction analysis of the boron deposits; x-ray diffraction was performed on a number of samples to determine the types of boron (and other compounds) formed in each trial and to guide the choices of test conditions for subsequent trials. It was found that at low reaction temperatures (in the range of around 830-950 °C), amorphous boron was the primary form of boron produced. Reaction temperatures in the range of around 950-1000 °C yielded various combinations of crystalline boron and amorphous boron. In the first trial performed at a temperature of 950 °C, a mix of amorphous boron and alpha-rhombohedral boron was formed. Using a scanning electron microscope, it was possible to see small alpha-rhombohedral boron crystals (on the order of ~1 micron in size) embedded in the surface of the deposit. In subsequent trials carried out at reaction temperatures in the range of 950 °C – 1000 °C, it was found that various combinations of alpha-rhombohedral boron, beta-rhombohedral boron, and amorphous boron were produced; the results tended to be unpredictable (alpha-rhombohedral boron was not produced in every trial), and the factors leading to success/failure were difficult to pinpoint. These results illustrate how sensitive of a process producing alpha-rhombohedral boron can be, and indicate that further improvements to the test apparatus and test conditions (for example, higher purity/cleanliness) may be necessary to optimize the boron deposition. Although alpha-rhombohedral boron crystals of large size were not achieved, this research was successful in (a) developing a pyrolysis apparatus and test procedure that can serve as a platform for future testing, (b) determining reaction temperatures at which alpha-rhombohedral boron can form, and (c) developing a consistent process for analyzing the boron deposits and determining their composition. Further experimentation is necessary to achieve a pyrolysis apparatus and test procedure that can yield large alpha-rhombohedral boron crystals with consistency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper investigates the static and dynamic characteristics of the semi-elliptical rocking disk on which a pendulum pinned. This coupled system’s response is also analyzed analytically and numerically when a vertical harmonic excitation is applied to the bottom of the rocking disk. Lagrange’s Equation is used to derive the motion equations of the disk-pendulum coupled system. The second derivative test for the system’s potential energy shows how the location of the pendulum’s pivotal point affects the number and stability of equilibria, and the change of location presents different bifurcation diagrams for different geometries of the rocking disk. For both vertically excited and unforced cases, the coupled system shows chaos easily, but the proper chosen parameters can still help the system reach and keep the steady state. For the steady state of the vertically excited rocking disk without a pendulum, the variation of the excitation’s amplitude and frequency result in the hysteresis for the amplitude of the response. When a pendulum is pinned on the rocking disk, three major categories of steady states are presently in the numerical way.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The national shortage of helium-3 has made it critical to develop an alternative to helium-3 neutron detectors. Boron-10, if it could be produced in macroscopic alpha-rhombohedral crystalline form, would be a viable alternative to helium-3. This work has determined the critical parameters needed for the preparation of alpha-rhombohedral boron by the pyrolytic decomposition of boron tribromide on tantalum wire. The primary parameters that must be met are wire temperature and feedstock purity. The minimum purity level for boron tribromide was determined to be 99.999% and it has been found that alpha-rhombohedral boron cannot be produced using 99.99% boron tribromide. The decomposition temperature was experimentally tested between 830°C and 1000°C. Alpha-rhombohedral boron was found at temperatures between 950°C and 1000°C using 99.999% pure boron tribromide.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With increasing prevalence and capabilities of autonomous systems as part of complex heterogeneous manned-unmanned environments (HMUEs), an important consideration is the impact of the introduction of automation on the optimal assignment of human personnel. The US Navy has implemented optimal staffing techniques before in the 1990's and 2000's with a "minimal staffing" approach. The results were poor, leading to the degradation of Naval preparedness. Clearly, another approach to determining optimal staffing is necessary. To this end, the goal of this research is to develop human performance models for use in determining optimal manning of HMUEs. The human performance models are developed using an agent-based simulation of the aircraft carrier flight deck, a representative safety-critical HMUE. The Personnel Multi-Agent Safety and Control Simulation (PMASCS) simulates and analyzes the effects of introducing generalized maintenance crew skill sets and accelerated failure repair times on the overall performance and safety of the carrier flight deck. A behavioral model of four operator types (ordnance officers, chocks and chains, fueling officers, plane captains, and maintenance operators) is presented here along with an aircraft failure model. The main focus of this work is on the maintenance operators and aircraft failure modeling, since they have a direct impact on total launch time, a primary metric for carrier deck performance. With PMASCS I explore the effects of two variables on total launch time of 22 aircraft: 1) skill level of maintenance operators and 2) aircraft failure repair times while on the catapult (referred to as Phase 4 repair times). It is found that neither introducing a generic skill set to maintenance crews nor introducing a technology to accelerate Phase 4 aircraft repair times improves the average total launch time of 22 aircraft. An optimal manning level of 3 maintenance crews is found under all conditions, the point at which any additional maintenance crews does not reduce the total launch time. An additional discussion is included about how these results change if the operations are relieved of the bottleneck of installing the holdback bar at launch time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bayesian nonparametric models, such as the Gaussian process and the Dirichlet process, have been extensively applied for target kinematics modeling in various applications including environmental monitoring, traffic planning, endangered species tracking, dynamic scene analysis, autonomous robot navigation, and human motion modeling. As shown by these successful applications, Bayesian nonparametric models are able to adjust their complexities adaptively from data as necessary, and are resistant to overfitting or underfitting. However, most existing works assume that the sensor measurements used to learn the Bayesian nonparametric target kinematics models are obtained a priori or that the target kinematics can be measured by the sensor at any given time throughout the task. Little work has been done for controlling the sensor with bounded field of view to obtain measurements of mobile targets that are most informative for reducing the uncertainty of the Bayesian nonparametric models. To present the systematic sensor planning approach to leaning Bayesian nonparametric models, the Gaussian process target kinematics model is introduced at first, which is capable of describing time-invariant spatial phenomena, such as ocean currents, temperature distributions and wind velocity fields. The Dirichlet process-Gaussian process target kinematics model is subsequently discussed for modeling mixture of mobile targets, such as pedestrian motion patterns.

Novel information theoretic functions are developed for these introduced Bayesian nonparametric target kinematics models to represent the expected utility of measurements as a function of sensor control inputs and random environmental variables. A Gaussian process expected Kullback Leibler divergence is developed as the expectation of the KL divergence between the current (prior) and posterior Gaussian process target kinematics models with respect to the future measurements. Then, this approach is extended to develop a new information value function that can be used to estimate target kinematics described by a Dirichlet process-Gaussian process mixture model. A theorem is proposed that shows the novel information theoretic functions are bounded. Based on this theorem, efficient estimators of the new information theoretic functions are designed, which are proved to be unbiased with the variance of the resultant approximation error decreasing linearly as the number of samples increases. Computational complexities for optimizing the novel information theoretic functions under sensor dynamics constraints are studied, and are proved to be NP-hard. A cumulative lower bound is then proposed to reduce the computational complexity to polynomial time.

Three sensor planning algorithms are developed according to the assumptions on the target kinematics and the sensor dynamics. For problems where the control space of the sensor is discrete, a greedy algorithm is proposed. The efficiency of the greedy algorithm is demonstrated by a numerical experiment with data of ocean currents obtained by moored buoys. A sweep line algorithm is developed for applications where the sensor control space is continuous and unconstrained. Synthetic simulations as well as physical experiments with ground robots and a surveillance camera are conducted to evaluate the performance of the sweep line algorithm. Moreover, a lexicographic algorithm is designed based on the cumulative lower bound of the novel information theoretic functions, for the scenario where the sensor dynamics are constrained. Numerical experiments with real data collected from indoor pedestrians by a commercial pan-tilt camera are performed to examine the lexicographic algorithm. Results from both the numerical simulations and the physical experiments show that the three sensor planning algorithms proposed in this dissertation based on the novel information theoretic functions are superior at learning the target kinematics with

little or no prior knowledge

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The focus of this work is to develop and employ numerical methods that provide characterization of granular microstructures, dynamic fragmentation of brittle materials, and dynamic fracture of three-dimensional bodies.

We first propose the fabric tensor formalism to describe the structure and evolution of lithium-ion electrode microstructure during the calendaring process. Fabric tensors are directional measures of particulate assemblies based on inter-particle connectivity, relating to the structural and transport properties of the electrode. Applying this technique to X-ray computed tomography of cathode microstructure, we show that fabric tensors capture the evolution of the inter-particle contact distribution and are therefore good measures for the internal state of and electronic transport within the electrode.

We then shift focus to the development and analysis of fracture models within finite element simulations. A difficult problem to characterize in the realm of fracture modeling is that of fragmentation, wherein brittle materials subjected to a uniform tensile loading break apart into a large number of smaller pieces. We explore the effect of numerical precision in the results of dynamic fragmentation simulations using the cohesive element approach on a one-dimensional domain. By introducing random and non-random field variations, we discern that round-off error plays a significant role in establishing a mesh-convergent solution for uniform fragmentation problems. Further, by using differing magnitudes of randomized material properties and mesh discretizations, we find that employing randomness can improve convergence behavior and provide a computational savings.

The Thick Level-Set model is implemented to describe brittle media undergoing dynamic fragmentation as an alternative to the cohesive element approach. This non-local damage model features a level-set function that defines the extent and severity of degradation and uses a length scale to limit the damage gradient. In terms of energy dissipated by fracture and mean fragment size, we find that the proposed model reproduces the rate-dependent observations of analytical approaches, cohesive element simulations, and experimental studies.

Lastly, the Thick Level-Set model is implemented in three dimensions to describe the dynamic failure of brittle media, such as the active material particles in the battery cathode during manufacturing. The proposed model matches expected behavior from physical experiments, analytical approaches, and numerical models, and mesh convergence is established. We find that the use of an asymmetrical damage model to represent tensile damage is important to producing the expected results for brittle fracture problems.

The impact of this work is that designers of lithium-ion battery components can employ the numerical methods presented herein to analyze the evolving electrode microstructure during manufacturing, operational, and extraordinary loadings. This allows for enhanced designs and manufacturing methods that advance the state of battery technology. Further, these numerical tools have applicability in a broad range of fields, from geotechnical analysis to ice-sheet modeling to armor design to hydraulic fracturing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The work presented in this dissertation is focused on applying engineering methods to develop and explore probabilistic survival models for the prediction of decompression sickness in US NAVY divers. Mathematical modeling, computational model development, and numerical optimization techniques were employed to formulate and evaluate the predictive quality of models fitted to empirical data. In Chapters 1 and 2 we present general background information relevant to the development of probabilistic models applied to predicting the incidence of decompression sickness. The remainder of the dissertation introduces techniques developed in an effort to improve the predictive quality of probabilistic decompression models and to reduce the difficulty of model parameter optimization.

The first project explored seventeen variations of the hazard function using a well-perfused parallel compartment model. Models were parametrically optimized using the maximum likelihood technique. Model performance was evaluated using both classical statistical methods and model selection techniques based on information theory. Optimized model parameters were overall similar to those of previously published Results indicated that a novel hazard function definition that included both ambient pressure scaling and individually fitted compartment exponent scaling terms.

We developed ten pharmacokinetic compartmental models that included explicit delay mechanics to determine if predictive quality could be improved through the inclusion of material transfer lags. A fitted discrete delay parameter augmented the inflow to the compartment systems from the environment. Based on the observation that symptoms are often reported after risk accumulation begins for many of our models, we hypothesized that the inclusion of delays might improve correlation between the model predictions and observed data. Model selection techniques identified two models as having the best overall performance, but comparison to the best performing model without delay and model selection using our best identified no delay pharmacokinetic model both indicated that the delay mechanism was not statistically justified and did not substantially improve model predictions.

Our final investigation explored parameter bounding techniques to identify parameter regions for which statistical model failure will not occur. When a model predicts a no probability of a diver experiencing decompression sickness for an exposure that is known to produce symptoms, statistical model failure occurs. Using a metric related to the instantaneous risk, we successfully identify regions where model failure will not occur and identify the boundaries of the region using a root bounding technique. Several models are used to demonstrate the techniques, which may be employed to reduce the difficulty of model optimization for future investigations.