1 resultado para 080607 Information Engineering and Theory
em Duke University
Filtro por publicador
- Repository Napier (1)
- Aberdeen University (4)
- Abertay Research Collections - Abertay University’s repository (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- Applied Math and Science Education Repository - Washington - USA (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (56)
- Aston University Research Archive (16)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (11)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (2)
- Biodiversity Heritage Library, United States (2)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (37)
- Brock University, Canada (9)
- Bucknell University Digital Commons - Pensilvania - USA (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (13)
- CentAUR: Central Archive University of Reading - UK (80)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (12)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (32)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (32)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (3)
- Dalarna University College Electronic Archive (3)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- Digital Commons - Michigan Tech (3)
- Digital Commons - Montana Tech (1)
- Digital Commons at Florida International University (8)
- Digital Peer Publishing (4)
- Digital Repository at Iowa State University (1)
- DigitalCommons@The Texas Medical Center (9)
- DigitalCommons@University of Nebraska - Lincoln (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (46)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (1)
- eScholarship Repository - University of California (2)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institute of Public Health in Ireland, Ireland (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (14)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (14)
- Massachusetts Institute of Technology (3)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- National Center for Biotechnology Information - NCBI (8)
- Nottingham eTheses (1)
- Portal de Revistas Científicas Complutenses - Espanha (3)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (3)
- Repositorio Académico de la Universidad Nacional de Costa Rica (3)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório da Produção Científica e Intelectual da Unicamp (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (10)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (2)
- Repositorio Institucional de la Universidad de Almería (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (20)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (10)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (5)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad Autónoma de Nuevo León, Mexico (2)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (11)
- Universidad Politécnica de Madrid (35)
- Universidade do Minho (7)
- Universidade Metodista de São Paulo (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (12)
- Université de Lausanne, Switzerland (21)
- Université de Montréal (1)
- Université de Montréal, Canada (9)
- University of Canberra Research Repository - Australia (2)
- University of Connecticut - USA (1)
- University of Michigan (109)
- University of Queensland eSpace - Australia (51)
- University of Southampton, United Kingdom (6)
- University of Washington (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
Using the wisdom of crowds---combining many individual forecasts to obtain an aggregate estimate---can be an effective technique for improving forecast accuracy. When individual forecasts are drawn from independent and identical information sources, a simple average provides the optimal crowd forecast. However, correlated forecast errors greatly limit the ability of the wisdom of crowds to recover the truth. In practice, this dependence often emerges because information is shared: forecasters may to a large extent draw on the same data when formulating their responses.
To address this problem, I propose an elicitation procedure in which each respondent is asked to provide both their own best forecast and a guess of the average forecast that will be given by all other respondents. I study optimal responses in a stylized information setting and develop an aggregation method, called pivoting, which separates individual forecasts into shared and private information and then recombines these results in the optimal manner. I develop a tailored pivoting procedure for each of three information models, and introduce a simple and robust variant that outperforms the simple average across a variety of settings.
In three experiments, I investigate the method and the accuracy of the crowd forecasts. In the first study, I vary the shared and private information in a controlled environment, while the latter two studies examine forecasts in real-world contexts. Overall, the data suggest that a simple minimal pivoting procedure provides an effective aggregation technique that can significantly outperform the crowd average.