2 resultados para équation Rehm-Weller
em Duke University
Resumo:
I demonstrate a powerful tension between acquiring information and incorporating it into asset prices, the two core elements of price discovery. As a salient case, I focus on the transformative rise of algorithmic trading (AT) typically associated with improved price efficiency. Using a measure of the relative information content of prices and a comprehensive panel of 37,325 stock-quarters of SEC market data, I establish instead that algorithmic trading strongly decreases the net amount of information in prices. The increase in price distortions associated with the AT “information gap” is roughly $42.6 billion/year for U.S. common stocks around earnings announcement events alone. Information losses are concentrated among stocks with high shares of algorithmic liquidity takers relative to algorithmic liquidity makers, suggesting that aggressive AT powerfully deters fundamental information acquisition despite its importance for translating available information into prices.
Resumo:
I develop a new methodology for measuring tail risks using the cross section of bid-ask spreads. Market makers embed tail risk information into spreads because (1) they lose to arbitrageurs when changes to asset values exceed the cost of liquidity and (2) underlying price movements and potential costs are linear in factor loadings. Using this insight, simple cross-sectional regressions relating spreads and trading volume to factor betas can recover tail risks in real time for priced or non-priced return factors. The methodology disentangles financial and aggregate market risks during the 2007-2008 Financial Crisis; anticipates jump risks associated with Federal Open Market Committee announcements; and quantifies a sharp, temporary increase in market tail risk before and throughout the 2010 Flash Crash. The recovered time series of implied market risks also aligns closely with both realized market jumps and the VIX.