2 resultados para (H2S HS- S2-)

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herein, we demonstrate that highly sensitive conductometric gas nanosensors for H(2)S can be synthesized by electrodepositing gold nanoparticles on single-walled carbon nanotube (SWNT) networks. Adjusting the electrodeposition conditions allowed for tuning of the size and number of gold nanoparticles deposited. The best H(2)S sensing performance was obtained with discrete gold nanodeposits rather than continuous nanowires. The gas nanosensors could sense H(2)S in air at room temperature with a 3 ppb limit of detection. The sensors were reversible, and increasing the bias voltage reduced the sensor recovery time, probably by local Joule heating. The sensing mechanism is believed to be based on the modulation of the conduction path across the nanotubes emanating from the modulation of electron exchange between the gold and carbon nanotube defect sites when exposed to H(2)S.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extensive departures from balanced gene dose in aneuploids are highly deleterious. However, we know very little about the relationship between gene copy number and expression in aneuploid cells. We determined copy number and transcript abundance (expression) genome-wide in Drosophila S2 cells by DNA-Seq and RNA-Seq. We found that S2 cells are aneuploid for >43 Mb of the genome, primarily in the range of one to five copies, and show a male genotype ( approximately two X chromosomes and four sets of autosomes, or 2X;4A). Both X chromosomes and autosomes showed expression dosage compensation. X chromosome expression was elevated in a fixed-fold manner regardless of actual gene dose. In engineering terms, the system "anticipates" the perturbation caused by X dose, rather than responding to an error caused by the perturbation. This feed-forward regulation resulted in precise dosage compensation only when X dose was half of the autosome dose. Insufficient compensation occurred at lower X chromosome dose and excessive expression occurred at higher doses. RNAi knockdown of the Male Specific Lethal complex abolished feed-forward regulation. Both autosome and X chromosome genes show Male Specific Lethal-independent compensation that fits a first order dose-response curve. Our data indicate that expression dosage compensation dampens the effect of altered DNA copy number genome-wide. For the X chromosome, compensation includes fixed and dose-dependent components.