43 resultados para Clinical Questions
Resumo:
BACKGROUND: The purpose of this study was to evaluate whether compliance and rehabilitative efforts were predictors of early clinical outcome of total hip resurfacing arthroplasty. METHODS: A cross-sectional survey was utilized to collect information from 147 resurfacing patients, who were operated on by a single surgeon, regarding their level of commitment to rehabilitation following surgery. Patients were followed for a mean of 52 months (range, 24 to 90 months). Clinical outcomes and functional capabilities were assessed utilizing the Harris hip objective rating system, the SF-12 Health Survey, and an eleven-point satisfaction score. A linear regression analysis was used to determine whether there was any correlation between the rehabilitation commitment scores and any of the outcome measures, and a multivariate regression model was used to control for potentially confounding factors. RESULTS: Overall, an increased level of commitment to rehabilitation was positively correlated with each of the following outcome measures: SF-12 Mental Component Score, SF-12 Physical Component Score, Harris Hip score, and satisfaction scores. These correlations remained statistically significant in the multivariate regression model. CONCLUSIONS: Patients who were more committed to their therapy after hip resurfacing returned to higher levels of functionality and were more satisfied following their surgery.
Resumo:
Our media is saturated with claims of ``facts'' made from data. Database research has in the past focused on how to answer queries, but has not devoted much attention to discerning more subtle qualities of the resulting claims, e.g., is a claim ``cherry-picking''? This paper proposes a Query Response Surface (QRS) based framework that models claims based on structured data as parameterized queries. A key insight is that we can learn a lot about a claim by perturbing its parameters and seeing how its conclusion changes. This framework lets us formulate and tackle practical fact-checking tasks --- reverse-engineering vague claims, and countering questionable claims --- as computational problems. Within the QRS based framework, we take one step further, and propose a problem along with efficient algorithms for finding high-quality claims of a given form from data, i.e. raising good questions, in the first place. This is achieved to using a limited number of high-valued claims to represent high-valued regions of the QRS. Besides the general purpose high-quality claim finding problem, lead-finding can be tailored towards specific claim quality measures, also defined within the QRS framework. An example of uniqueness-based lead-finding is presented for ``one-of-the-few'' claims, landing in interpretable high-quality claims, and an adjustable mechanism for ranking objects, e.g. NBA players, based on what claims can be made for them. Finally, we study the use of visualization as a powerful way of conveying results of a large number of claims. An efficient two stage sampling algorithm is proposed for generating input of 2d scatter plot with heatmap, evalutaing a limited amount of data, while preserving the two essential visual features, namely outliers and clusters. For all the problems, we present real-world examples and experiments that demonstrate the power of our model, efficiency of our algorithms, and usefulness of their results.
Resumo:
Intraoperative assessment of surgical margins is critical to ensuring residual tumor does not remain in a patient. Previously, we developed a fluorescence structured illumination microscope (SIM) system with a single-shot field of view (FOV) of 2.1 × 1.6 mm (3.4 mm2) and sub-cellular resolution (4.4 μm). The goal of this study was to test the utility of this technology for the detection of residual disease in a genetically engineered mouse model of sarcoma. Primary soft tissue sarcomas were generated in the hindlimb and after the tumor was surgically removed, the relevant margin was stained with acridine orange (AO), a vital stain that brightly stains cell nuclei and fibrous tissues. The tissues were imaged with the SIM system with the primary goal of visualizing fluorescent features from tumor nuclei. Given the heterogeneity of the background tissue (presence of adipose tissue and muscle), an algorithm known as maximally stable extremal regions (MSER) was optimized and applied to the images to specifically segment nuclear features. A logistic regression model was used to classify a tissue site as positive or negative by calculating area fraction and shape of the segmented features that were present and the resulting receiver operator curve (ROC) was generated by varying the probability threshold. Based on the ROC curves, the model was able to classify tumor and normal tissue with 77% sensitivity and 81% specificity (Youden's index). For an unbiased measure of the model performance, it was applied to a separate validation dataset that resulted in 73% sensitivity and 80% specificity. When this approach was applied to representative whole margins, for a tumor probability threshold of 50%, only 1.2% of all regions from the negative margin exceeded this threshold, while over 14.8% of all regions from the positive margin exceeded this threshold.
Resumo:
BACKGROUND: The Affordable Care Act encourages healthcare systems to integrate behavioral and medical healthcare, as well as to employ electronic health records (EHRs) for health information exchange and quality improvement. Pragmatic research paradigms that employ EHRs in research are needed to produce clinical evidence in real-world medical settings for informing learning healthcare systems. Adults with comorbid diabetes and substance use disorders (SUDs) tend to use costly inpatient treatments; however, there is a lack of empirical data on implementing behavioral healthcare to reduce health risk in adults with high-risk diabetes. Given the complexity of high-risk patients' medical problems and the cost of conducting randomized trials, a feasibility project is warranted to guide practical study designs. METHODS: We describe the study design, which explores the feasibility of implementing substance use Screening, Brief Intervention, and Referral to Treatment (SBIRT) among adults with high-risk type 2 diabetes mellitus (T2DM) within a home-based primary care setting. Our study includes the development of an integrated EHR datamart to identify eligible patients and collect diabetes healthcare data, and the use of a geographic health information system to understand the social context in patients' communities. Analysis will examine recruitment, proportion of patients receiving brief intervention and/or referrals, substance use, SUD treatment use, diabetes outcomes, and retention. DISCUSSION: By capitalizing on an existing T2DM project that uses home-based primary care, our study results will provide timely clinical information to inform the designs and implementation of future SBIRT studies among adults with multiple medical conditions.
Resumo:
PURPOSE: Detoxification often serves as an initial contact for treatment and represents an opportunity for engaging patients in aftercare to prevent relapse. However, there is limited information concerning clinical profiles of individuals seeking detoxification, and the opportunity to engage patients in detoxification for aftercare often is missed. This study examined clinical profiles of a geographically diverse sample of opioid-dependent adults in detoxification to discern the treatment needs of a growing number of women and whites with opioid addiction and to inform interventions aimed at improving use of aftercare or rehabilitation. METHODS: The sample included 343 opioid-dependent patients enrolled in two national multi-site studies of the National Drug Abuse Treatment Clinical Trials Network (CTN001-002). Patients were recruited from 12 addiction treatment programs across the nation. Gender and racial/ethnic differences in addiction severity, human immunodeficiency virus (HIV) risk, and quality of life were examined. RESULTS: Women and whites were more likely than men and African Americans to have greater psychiatric and family/social relationship problems and report poorer health-related quality of life and functioning. Whites and Hispanics exhibited higher levels of total HIV risk scores and risky injection drug use scores than African Americans, and Hispanics showed a higher level of unprotected sexual behaviors than whites. African Americans were more likely than whites to use heroin and cocaine and to have more severe alcohol and employment problems. CONCLUSIONS: Women and whites show more psychopathology than men and African Americans. These results highlight the need to monitor an increased trend of opioid addiction among women and whites and to develop effective combined psychosocial and pharmacologic treatments to meet the diverse needs of the expanding opioid-abusing population. Elevated levels of HIV risk behaviors among Hispanics and whites also warrant more research to delineate mechanisms and to reduce their risky behaviors.
Resumo:
Cryptococcus neoformans var. grubii (Cng) is the most common cause of fungal meningitis, and its prevalence is highest in sub-Saharan Africa. Patients become infected by inhaling airborne spores or desiccated yeast cells from the environment, where the fungus thrives in avian droppings, trees and soil. To investigate the prevalence and population structure of Cng in southern Africa, we analysed isolates from 77 environmental samples and 64 patients. We detected significant genetic diversity among isolates and strong evidence of geographic structure at the local level. High proportions of isolates with the rare MATa allele were observed in both clinical and environmental isolates; however, the mating-type alleles were unevenly distributed among different subpopulations. Nearly equal proportions of the MATa and MATα mating types were observed among all clinical isolates and in one environmental subpopulation from the eastern part of Botswana. As previously reported, there was evidence of both clonality and recombination in different geographic areas. These results provide a foundation for subsequent genomewide association studies to identify genes and genotypes linked to pathogenicity in humans.
Resumo:
Previous authors have suggested a higher likelihood for industry-sponsored (IS) studies to have positive outcomes than non-IS studies, though the influence of publication bias was believed to be a likely confounder. We attempted to control for the latter using a prepublication database to compare the primary outcome of recent trials based on sponsorship. We used the "advanced search" feature in the clinicaltrials.gov website to identify recently completed phase III studies involving the implementation of a pharmaceutical agent or device for which primary data were available. Studies were categorized as either National Institutes of Health (NIH) sponsored or IS. Results were labeled "favorable" if the results favored the intervention under investigation or "unfavorable" if the intervention fared worse than standard medical treatment. We also performed an independent literature search to identify the cardiovascular trials as a case example and again categorized them into IS versus NIH sponsored. A total of 226 studies sponsored by NIH were found. When these were compared with the latest 226 IS studies, it was found that IS studies were almost 4 times more likely to report a positive outcome (odds ratio [OR] 3.90, 95% confidence interval [CI] 2.6087 to 5.9680, p <0.0001). As a case example of a specialty, we also identified 25 NIH-sponsored and 215 IS cardiovascular trials, with most focusing on hypertension therapy (31.6%) and anticoagulation (17.9%). IS studies were 7 times more likely to report favorable outcomes (OR 7.54, 95% CI 2.19 to 25.94, p = 0.0014). They were also considerably less likely to report unfavorable outcomes (OR 0.11, 95% CI 0.04 to 0.26, p <0.0001). In conclusion, the outcomes of large clinical studies especially cardiovascular differ considerably on the basis of their funding source, and publication bias appears to have limited influence on these findings.
Resumo:
© 2015 Taylor & Francis Group, LLC.A characteristic immunopathology of human cancers is the induction of tumor antigen-specific T lymphocyte responses within solid tumor tissues. Current strategies for immune monitoring focus on the quantification of the density and differentiation status of tumor-infiltrating T lymphocytes; however, properties of the TCR repertoire - including antigen specificity, clonality, as well as its prognostic significance β remain elusive. In this study, we enrolled 28 gastric cancer patients and collected tumor tissues, adjacent normal mucosal tissues, and peripheral blood samples to study the landscape and compartmentalization of these patients’ TCR β repertoire by deep sequencing analyses. Our results illustrated antigen-driven expansion within the tumor compartment and the contracted size of shared clonotypes in mucosa and peripheral blood. Most importantly, the diversity of mucosal T lymphocytes could independently predict prognosis, which strongly underscores critical roles of resident mucosal T-cells in executing post-surgery immunosurveillance against tumor relapse.
Resumo:
Pancreatic cancer is a devastating disease with a universally poor prognosis. In 2015, it is estimated that there will be 48,960 new cases of pancreatic cancer and that 40,560 people will die of the disease. The 5-year survival rate is 7.2% for all patients with pancreatic cancer; however, survival depends greatly on the stage at diagnosis. Unfortunately, 53% of patients already have metastatic disease at diagnosis, which corresponds to a 5-year survival rate of 2.4%. Even for the 9% of patients with localized disease confined to the pancreas, the 5-year survival is still modest at only 27.1%. These grim statistics highlight the need for ways to identify cohorts of individuals at highest risk, methods to screen those at highest risk to identify preinvasive pathologic precursors, and development of effective systemic therapies. Recent clinical and translational progress has emphasized the relationship with diabetes, the role of the stroma, and the interplay of each of these with inflammation in the pathobiology of pancreatic cancer. In this article, we will discuss these relationships and how they might translate into novel management strategies for the treatment of this disease.
Resumo:
PURPOSE: Risk-stratified guidelines can improve quality of care and cost-effectiveness, but their uptake in primary care has been limited. MeTree, a Web-based, patient-facing risk-assessment and clinical decision support tool, is designed to facilitate uptake of risk-stratified guidelines. METHODS: A hybrid implementation-effectiveness trial of three clinics (two intervention, one control). PARTICIPANTS: consentable nonadopted adults with upcoming appointments. PRIMARY OUTCOME: agreement between patient risk level and risk management for those meeting evidence-based criteria for increased-risk risk-management strategies (increased risk) and those who do not (average risk) before MeTree and after. MEASURES: chart abstraction was used to identify risk management related to colon, breast, and ovarian cancer, hereditary cancer, and thrombosis. RESULTS: Participants = 488, female = 284 (58.2%), white = 411 (85.7%), mean age = 58.7 (SD = 12.3). Agreement between risk management and risk level for all conditions for each participant, except for colon cancer, which was limited to those <50 years of age, was (i) 1.1% (N = 2/174) for the increased-risk group before MeTree and 16.1% (N = 28/174) after and (ii) 99.2% (N = 2,125/2,142) for the average-risk group before MeTree and 99.5% (N = 2,131/2,142) after. Of those receiving increased-risk risk-management strategies at baseline, 10.5% (N = 2/19) met criteria for increased risk. After MeTree, 80.7% (N = 46/57) met criteria. CONCLUSION: MeTree integration into primary care can improve uptake of risk-stratified guidelines and potentially reduce "overuse" and "underuse" of increased-risk services.Genet Med 18 10, 1020-1028.
Resumo:
BACKGROUND: Incorporation of multiple enrichment biomarkers into prospective clinical trials is an active area of investigation, but the factors that determine clinical trial enrollment following a molecular prescreening program have not been assessed. PATIENTS AND METHODS: Patients with 5-fluorouracil-refractory metastatic colorectal cancer at the MD Anderson Cancer Center were offered screening in the Assessment of Targeted Therapies Against Colorectal Cancer (ATTACC) program to identify eligibility for companion phase I or II clinical trials with a therapy targeted to an aberration detected in the patient, based on testing by immunohistochemistry, targeted gene sequencing panels, and CpG island methylation phenotype assays. RESULTS: Between August 2010 and December 2013, 484 patients were enrolled, 458 (95%) had a biomarker result, and 157 (32%) were enrolled on a clinical trial (92 on biomarker-selected and 65 on nonbiomarker selected). Of the 458 patients with a biomarker result, enrollment on biomarker-selected clinical trials was ninefold higher for predefined ATTACC-companion clinical trials as opposed to nonpredefined biomarker-selected clinical trials, 17.9% versus 2%, P < 0.001. Factors that correlated positively with trial enrollment in multivariate analysis were higher performance status, older age, lack of standard of care therapy, established patient at MD Anderson, and the presence of an eligible biomarker for an ATTACC-companion study. Early molecular screening did result in a higher rate of patients with remaining standard of care therapy enrolling on ATTACC-companion clinical trials, 45.1%, in contrast to nonpredefined clinical trials, 22.7%; odds ratio 3.1, P = 0.002. CONCLUSIONS: Though early molecular prescreening for predefined clinical trials resulted in an increase rate of trial enrollment of nonrefractory patients, the majority of patients enrolled on clinical trials were refractory to standard of care therapy. Within molecular prescreening programs, tailoring screening for preidentified and open clinical trials, temporally linking screening to treatment and optimizing both patient and physician engagement are efforts likely to improve enrollment on biomarker-selected clinical trials. CLINICAL TRIALS NUMBER: The study NCT number is NCT01196130.
Resumo:
Few epidemiologic studies describe longitudinal liver chemistry (LC) elevations in cancer patients. A population-based retrospective cohort was identified from 31 Phase 2-3 oncology trials (excluding targeted therapies) conducted from 1985 to 2005 to evaluate background rates of LC elevations in patients (n = 3998) with or without liver metastases. Patients with baseline liver metastases (29% of patients) presented with a 3% prevalence of alanine transaminase (ALT) ≥ 3x upper limits normal (ULN) and 0.2% prevalence of bilirubin ≥ 3xULN. During follow-up, the incidence (per 1000 person-months) of new onset ALT elevations ≥3xULN was 6.1 (95% CI: 4.5, 8.0) and 2.2 (95% CI: 0.9, 4.5) in patients without and with liver metastases, respectively. No new incident cases of ALT and bilirubin elevations suggestive of severe liver injury occurred among those with liver metastases; a single case occurred among those without metastasis. Regardless of the presence of liver metastases, LC elevations were rare in cancer patients during oncology trials, which may be due to enrollment criteria. Our study validates uniform thresholds for detection of LC elevations in oncology studies and serves as an empirical referent point for comparing liver enzyme abnormalities in oncology trials of novel targeted therapies. These data support uniform LC stopping criteria in oncology trials.