81 resultados para toll-tike receptor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exogenous gene delivery to alter the function of the heart is a potential novel therapeutic strategy for treatment of cardiovascular diseases such as heart failure (HF). Before gene therapy approaches to alter cardiac function can be realized, efficient and reproducible in vivo gene techniques must be established to efficiently transfer transgenes globally to the myocardium. We have been testing the hypothesis that genetic manipulation of the myocardial beta-adrenergic receptor (beta-AR) system, which is impaired in HF, can enhance cardiac function. We have delivered adenoviral transgenes, including the human beta2-AR (Adeno-beta2AR), to the myocardium of rabbits using an intracoronary approach. Catheter-mediated Adeno-beta2AR delivery produced diffuse multichamber myocardial expression, peaking 1 week after gene transfer. A total of 5 x 10(11) viral particles of Adeno-beta2AR reproducibly produced 5- to 10-fold beta-AR overexpression in the heart, which, at 7 and 21 days after delivery, resulted in increased in vivo hemodynamic function compared with control rabbits that received an empty adenovirus. Several physiological parameters, including dP/dtmax as a measure of contractility, were significantly enhanced basally and showed increased responsiveness to the beta-agonist isoproterenol. Our results demonstrate that global myocardial in vivo gene delivery is possible and that genetic manipulation of beta-AR density can result in enhanced cardiac performance. Thus, replacement of lost receptors seen in HF may represent novel inotropic therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deleterious effects on the heart from chronic stimulation of beta-adrenergic receptors (betaARs), members of the 7 transmembrane receptor family, have classically been shown to result from Gs-dependent adenylyl cyclase activation. Here, we identify a new signaling mechanism using both in vitro and in vivo systems whereby beta-arrestins mediate beta1AR signaling to the EGFR. This beta-arrestin-dependent transactivation of the EGFR, which is independent of G protein activation, requires the G protein-coupled receptor kinases 5 and 6. In mice undergoing chronic sympathetic stimulation, this novel signaling pathway is shown to promote activation of cardioprotective pathways that counteract the effects of catecholamine toxicity. These findings suggest that drugs that act as classical antagonists for G protein signaling, but also stimulate signaling via beta-arrestin-mediated cytoprotective pathways, would represent a novel class of agents that could be developed for multiple members of the 7 transmembrane receptor family.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To assess the effect of targeted myocardial beta-adrenergic receptor (AR) stimulation on relaxation and phospholamban regulation, we studied the physiological and biochemical alterations associated with overexpression of the human beta2-AR gene in transgenic mice. These mice have an approximately 200-fold increase in beta-AR density and a 2-fold increase in basal adenylyl cyclase activity relative to negative littermate controls. Mice were catheterized with a high fidelity micromanometer and hemodynamic recordings were obtained in vivo. Overexpression of the beta2-AR altered parameters of relaxation. At baseline, LV dP/dt(min) and the time constant of LV pressure isovolumic decay (Tau) in the transgenic mice were significantly shorter compared with controls, indicating markedly enhanced myocardial relaxation. Isoproterenol stimulation resulted in shortening of relaxation velocity in control mice but not in the transgenic mice, indicating maximal relaxation in these animals. Immunoblotting analysis revealed a selective decrease in the amount of phospholamban protein, without a significant change in the content for either sarcoplasmic reticulum Ca2+ ATPase or calsequestrin, in the transgenic hearts compared with controls. This study indicates that myocardial relaxation is both markedly enhanced and maximal in these mice and that conditions associated with chronic beta-AR stimulation can result in a selective reduction of phospholamban protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antibodies specific for the beta(1)-adrenergic receptor are found in patients with chronic heart failure of various etiologies. From work presented in this issue of the JCI, we can now infer that these antibodies actually contribute to the pathogenesis of chronic heart failure. This commentary discusses mechanisms by which these antibodies may engender cardiomyopathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Release of endogenous dynorphin opioids within the spinal cord after partial sciatic nerve ligation (pSNL) is known to contribute to the neuropathic pain processes. Using a phosphoselective antibody [kappa opioid receptor (KOR-P)] able to detect the serine 369 phosphorylated form of the KOR, we determined possible sites of dynorphin action within the spinal cord after pSNL. KOR-P immunoreactivity (IR) was markedly increased in the L4-L5 spinal dorsal horn of wild-type C57BL/6 mice (7-21 d) after lesion, but not in mice pretreated with the KOR antagonist nor-binaltorphimine (norBNI). In addition, knock-out mice lacking prodynorphin, KOR, or G-protein receptor kinase 3 (GRK3) did not show significant increases in KOR-P IR after pSNL. KOR-P IR was colocalized in both GABAergic neurons and GFAP-positive astrocytes in both ipsilateral and contralateral spinal dorsal horn. Consistent with sustained opioid release, KOR knock-out mice developed significantly increased tactile allodynia and thermal hyperalgesia in both the early (first week) and late (third week) interval after lesion. Similarly, mice pretreated with norBNI showed enhanced hyperalgesia and allodynia during the 3 weeks after pSNL. Because sustained activation of opioid receptors might induce tolerance, we measured the antinociceptive effect of the kappa agonist U50,488 using radiant heat applied to the ipsilateral hindpaw, and we found that agonist potency was significantly decreased 7 d after pSNL. In contrast, neither prodynorphin nor GRK3 knock-out mice showed U50,488 tolerance after pSNL. These findings suggest that pSNL induced a sustained release of endogenous prodynorphin-derived opioid peptides that activated an anti-nociceptive KOR system in mouse spinal cord. Thus, endogenous dynorphin had both pronociceptive and antinociceptive actions after nerve injury and induced GRK3-mediated opioid tolerance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

G protein-coupled receptor kinases (GRKs) phosphorylate activated G protein-coupled receptors, including alpha(1B)-adrenergic receptors (ARs), resulting in desensitization. In vivo analysis of GRK substrate selectivity has been limited. Therefore, we generated hybrid transgenic mice with myocardium-targeted overexpression of 1 of 3 GRKs expressed in the heart (GRK2 [commonly known as the beta-AR kinase 1], GRK3, or GRK5) with concomitant cardiac expression of a constitutively activated mutant (CAM) or wild-type alpha(1B)AR. Transgenic mice with cardiac CAMalpha(1B)AR overexpression had enhanced myocardial alpha(1)AR signaling and elevated heart-to-body weight ratios with ventricular atrial natriuretic factor expression denoting myocardial hypertrophy. Transgenic mouse hearts overexpressing only GRK2, GRK3, or GRK5 had no hypertrophy. In hybrid transgenic mice, enhanced in vivo signaling through CAMalpha(1B)ARs, as measured by myocardial diacylglycerol content, was attenuated by concomitant overexpression of GRK3 but not GRK2 or GRK5. CAMalpha(1B)AR-induced hypertrophy and ventricular atrial natriuretic factor expression were significantly attenuated with either concurrent GRK3 or GRK5 overexpression. Similar GRK selectivity was seen in hybrid transgenic mice with wild-type alpha(1B)AR overexpression concurrently with a GRK. GRK2 overexpression was without effect on any in vivo CAM or wild-type alpha(1B)AR cardiac phenotype, which is in contrast to previously reported in vitro findings. Furthermore, endogenous myocardial alpha(1)AR mitogen-activated protein kinase signaling in single-GRK transgenic mice also exhibited selectivity, as GRK3 and GRK5 desensitized in vivo alpha(1)AR mitogen-activated protein kinase responses that were unaffected by GRK2 overexpression. Thus, these results demonstrate that GRKs differentially interact with alpha(1B)ARs in vivo such that GRK3 desensitizes all alpha(1B)AR signaling, whereas GRK5 has partial effects and, most interestingly, GRK2 has no effect on in vivo alpha(1B)AR signaling in the heart.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deregulation of the Sonic hedgehog pathway has been implicated in an increasing number of human cancers. In this pathway, the seven-transmembrane (7TM) signaling protein Smoothened regulates cellular proliferation and differentiation through activation of the transcription factor Gli. The activity of mammalian Smoothened is controlled by three different hedgehog proteins, Indian, Desert, and Sonic hedgehog, through their interaction with the Smoothened inhibitor Patched. However, the mechanisms of signal transduction from Smoothened are poorly understood. We show that a kinase which regulates signaling by many "conventional" 7TM G-protein-coupled receptors, G protein-coupled receptor kinase 2 (GRK2), participates in Smoothened signaling. Expression of GRK2, but not catalytically inactive GRK2, synergizes with active Smoothened to mediate Gli-dependent transcription. Moreover, knockdown of endogenous GRK2 by short hairpin RNA (shRNA) significantly reduces signaling in response to the Smoothened agonist SAG and also inhibits signaling induced by an oncogenic Smoothened mutant, Smo M2. We find that GRK2 promotes the association between active Smoothened and beta-arrestin 2. Indeed, Gli-dependent signaling, mediated by coexpression of Smoothened and GRK2, is diminished by beta-arrestin 2 knockdown with shRNA. Together, these data suggest that GRK2 plays a positive role in Smoothened signaling, at least in part, through the promotion of an association between beta-arrestin 2 and Smoothened.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

beta-arrestin-1 is an adaptor protein that mediates agonist-dependent internalization and desensitization of G-protein-coupled receptors (GPCRs) and also participates in the process of heterologous desensitization between receptor tyrosine kinases and GPCR signaling. In the present study, we determined whether beta-arrestin-1 is involved in insulin-induced insulin receptor substrate 1 (IRS-1) degradation. Overexpression of wild-type (WT) beta-arrestin-1 attenuated insulin-induced degradation of IRS-1, leading to increased insulin signaling downstream of IRS-1. When endogenous beta-arrestin-1 was knocked down by transfection of beta-arrestin-1 small interfering RNA, insulin-induced IRS-1 degradation was enhanced. Insulin stimulated the association of IRS-1 and Mdm2, an E3 ubiquitin ligase, and this association was inhibited to overexpression of WT beta-arrestin-1, which led by decreased ubiquitin content of IRS-1, suggesting that both beta-arrestin-1 and IRS-1 competitively bind to Mdm2. In summary, we have found the following: (i) beta-arrestin-1 can alter insulin signaling by inhibiting insulin-induced proteasomal degradation of IRS-1; (ii) beta-arrestin-1 decreases the rate of ubiquitination of IRS-1 by competitively binding to endogenous Mdm2, an E3 ligase that can ubiquitinate IRS-1; (iii) dephosphorylation of S412 on beta-arrestin and the amino terminus of beta-arrestin-1 are required for this effect of beta-arrestin on IRS-1 degradation; and (iv) inhibition of beta-arrestin-1 leads to enhanced IRS-1 degradation and accentuated cellular insulin resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

G protein-coupled receptor kinase 2 (GRK2) phosphorylates activated G protein-coupled receptors (GPCRs), which ultimately leads to their desensitization and/or downregulation. The enzyme is recruited to the plasma membrane via the interaction of its carboxyl-terminal pleckstrin-homology (PH) domain with the beta and gamma subunits of heterotrimeric G proteins (Gbetagamma). An improved purification scheme for GRK2 has been developed, conditions under which GRK2 forms a complex with Gbeta(1)gamma(2) have been determined and the complex has been crystallized in CHAPS detergent micelles. Crystals of the GRK2-Gbetagamma complex belong to space group C2 and have unit-cell parameters a = 187.0, b = 72.1, c = 122.0 A, beta = 115.2 degrees. A complete data set has been collected to 3.2 A resolution with Cu Kalpha radiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

β-arrestins are versatile adapter proteins that form complexes with most G-protein-coupled receptors (GPCRs) following agonist binding and phosphorylation of receptors by G-protein-coupled receptor kinases (GRKs). They play a central role in the interrelated processes of homologous desensitization and GPCR sequestration, which lead to the termination of G protein activation. β-arrestin binding to GPCRs both uncouples receptors from heterotrimeric G proteins and targets them to clathrincoated pits for endocytosis. Recent data suggest that β-arrestins also function as GPCR signal transducers. They can form complexes with several signaling proteins, including Src family tyrosine kinases and components of the ERK1/2 and JNK3 MAP kinase cascades. By recruiting these kinases to agonist-occupied GPCRs, β-arrestins confer distinct signaling activities upon the receptor. β-arrestin-Src complexes have been proposed to modulate GPCR endocytosis, to trigger ERK1/2 activation and to mediate neutrophil degranulation. By acting as scaffolds for the ERK1/2 and JNK3 cascades, β-arrestins both facilitate GPCR-stimulated MAP kinase activation and target active MAP kinases to specific locations within the cell. Thus, their binding to GPCRs might initiate a second wave of signaling and represent a novel mechanism of GPCR signal transduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two widely coexpressed isoforms of beta-arrestin (termed beta arrestin 1 and 2) are highly similar in amino acid sequence. The beta-arrestins bind phosphorylated heptahelical receptors to desensitize and target them to clathrin-coated pits for endocytosis. To better define differences in the roles of beta-arrestin 1 and 2, we prepared mouse embryonic fibroblasts from knockout mice that lack one of the beta-arrestins (beta arr1-KO and beta arr2-KO) or both (beta arr1/2-KO), as well as their wild-type (WT) littermate controls. These cells were analyzed for their ability to support desensitization and sequestration of the beta(2)-adrenergic receptor (beta(2)-AR) and the angiotensin II type 1A receptor (AT(1A)-R). Both beta arr1-KO and beta arr2-KO cells showed similar impairment in agonist-stimulated beta(2)-AR and AT(1A)-R desensitization, when compared with their WT control cells, and the beta arr1/2-KO cells were even further impaired. Sequestration of the beta(2)-AR in the beta arr2-KO cells was compromised significantly (87% reduction), whereas in the beta arr1-KO cells it was not. Agonist-stimulated internalization of the AT(1A)-R was only slightly reduced in the beta arr1-KO but was unaffected in the beta arr2-KO cells. In the beta arr1/2-KO cells, the sequestration of both receptors was dramatically reduced. Comparison of the ability of the two beta-arrestins to sequester the beta(2)-AR revealed beta-arrestin 2 to be 100-fold more potent than beta-arrestin 1. Down-regulation of the beta(2)-AR was also prevented in the beta arr1/2-KO cells, whereas no change was observed in the single knockout cells. These findings suggest that sequestration of various heptahelical receptors is regulated differently by the two beta-arrestins, whereas both isoforms are capable of supporting receptor desensitization and down-regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pressure overload ventricular hypertrophy is accompanied by dysfunctional beta-adrenergic receptor signaling due to increased levels of the beta-adrenergic receptor kinase-1, which phosphorylates and desensitizes beta-adrenergic receptors. In this study, we examined whether increased beta-adrenergic receptor kinase 1 expression is associated with myocardial hypertrophy induced by adrenergic stimulation. With use of implanted mini-osmotic pumps, we treated mice with isoproterenol, phenylephrine, or vehicle to distinguish between alpha1- and beta-adrenergic stimulation. Both treatments resulted in cardiac hypertrophy, but only isoproterenol induced significant increases in beta-adrenergic receptor kinase-1 protein levels and activity. Similarly, in isolated adult rat cardiac myocytes, 24 hours of isoproterenol stimulation resulted in a significant 2.8-fold increase in beta-adrenergic receptor kinase-1 protein levels, whereas 24 hours of phenylephrine treatment did not alter beta-adrenergic receptor kinase-1 expression. Our results indicate that increased beta-adrenergic receptor kinase-1 is not invariably associated with myocardial hypertrophy but apparently is controlled by the state of beta-adrenergic receptor activation.