21 resultados para bisexual processes
Resumo:
UNLABELLED: Response inhibition is a key component of executive control, but its relation to other cognitive processes is not well understood. We recently documented the "inhibition-induced forgetting effect": no-go cues are remembered more poorly than go cues. We attributed this effect to central-resource competition, whereby response inhibition saps attention away from memory encoding. However, this proposal is difficult to test with behavioral means alone. We therefore used fMRI in humans to test two neural predictions of the "common resource hypothesis": (1) brain regions associated with response inhibition should exhibit greater resource demands during encoding of subsequently forgotten than remembered no-go cues; and (2) this higher inhibitory resource demand should lead to memory encoding regions having less resources available during encoding of subsequently forgotten no-go cues. Participants categorized face stimuli by gender in a go/no-go task and, following a delay, performed a surprise recognition memory test for those faces. Replicating previous findings, memory was worse for no-go than for go stimuli. Crucially, forgetting of no-go cues was predicted by high inhibitory resource demand, as quantified by the trial-by-trial ratio of activity in neural "no-go" versus "go" networks. Moreover, this index of inhibitory demand exhibited an inverse trial-by-trial relationship with activity in brain regions responsible for the encoding of no-go cues into memory, notably the ventrolateral prefrontal cortex. This seesaw pattern between the neural resource demand of response inhibition and activity related to memory encoding directly supports the hypothesis that response inhibition temporarily saps attentional resources away from stimulus processing. SIGNIFICANCE STATEMENT: Recent behavioral experiments showed that inhibiting a motor response to a stimulus (a "no-go cue") impairs subsequent memory for that cue. Here, we used fMRI to test whether this "inhibition-induced forgetting effect" is caused by competition for neural resources between the processes of response inhibition and memory encoding. We found that trial-by-trial variations in neural inhibitory resource demand predicted subsequent forgetting of no-go cues and that higher inhibitory demand was furthermore associated with lower concurrent activation in brain regions responsible for successful memory encoding of no-go cues. Thus, motor inhibition and stimulus encoding appear to compete with each other: when more resources have to be devoted to inhibiting action, less are available for encoding sensory stimuli.
Resumo:
The main conclusion of this dissertation is that global H2 production within young ocean crust (<10 Mya) is higher than currently recognized, in part because current estimates of H2 production accompanying the serpentinization of peridotite may be too low (Chapter 2) and in part because a number of abiogenic H2-producing processes have heretofore gone unquantified (Chapter 3). The importance of free H2 to a range of geochemical processes makes the quantitative understanding of H2 production advanced in this dissertation pertinent to an array of open research questions across the geosciences (e.g. the origin and evolution of life and the oxidation of the Earth’s atmosphere and oceans).
The first component of this dissertation (Chapter 2) examines H2 produced within young ocean crust [e.g. near the mid-ocean ridge (MOR)] by serpentinization. In the presence of water, olivine-rich rocks (peridotites) undergo serpentinization (hydration) at temperatures of up to ~500°C but only produce H2 at temperatures up to ~350°C. A simple analytical model is presented that mechanistically ties the process to seafloor spreading and explicitly accounts for the importance of temperature in H2 formation. The model suggests that H2 production increases with the rate of seafloor spreading and the net thickness of serpentinized peridotite (S-P) in a column of lithosphere. The model is applied globally to the MOR using conservative estimates for the net thickness of lithospheric S-P, our least certain model input. Despite the large uncertainties surrounding the amount of serpentinized peridotite within oceanic crust, conservative model parameters suggest a magnitude of H2 production (~1012 moles H2/y) that is larger than the most widely cited previous estimates (~1011 although previous estimates range from 1010-1012 moles H2/y). Certain model relationships are also consistent with what has been established through field studies, for example that the highest H2 fluxes (moles H2/km2 seafloor) are produced near slower-spreading ridges (<20 mm/y). Other modeled relationships are new and represent testable predictions. Principal among these is that about half of the H2 produced globally is produced off-axis beneath faster-spreading seafloor (>20 mm/y), a region where only one measurement of H2 has been made thus far and is ripe for future investigation.
In the second part of this dissertation (Chapter 3), I construct the first budget for free H2 in young ocean crust that quantifies and compares all currently recognized H2 sources and H2 sinks. First global estimates of budget components are proposed in instances where previous estimate(s) could not be located provided that the literature on that specific budget component was not too sparse to do so. Results suggest that the nine known H2 sources, listed in order of quantitative importance, are: Crystallization (6x1012 moles H2/y or 61% of total H2 production), serpentinization (2x1012 moles H2/y or 21%), magmatic degassing (7x1011 moles H2/y or 7%), lava-seawater interaction (5x1011 moles H2/y or 5%), low-temperature alteration of basalt (5x1011 moles H2/y or 5%), high-temperature alteration of basalt (3x1010 moles H2/y or <1%), catalysis (3x108 moles H2/y or <<1%), radiolysis (2x108 moles H2/y or <<1%), and pyrite formation (3x106 moles H2/y or <<1%). Next we consider two well-known H2 sinks, H2 lost to the ocean and H2 occluded within rock minerals, and our analysis suggests that both are of similar size (both are 6x1011 moles H2/y). Budgeting results suggest a large difference between H2 sources (total production = 1x1013 moles H2/y) and H2 sinks (total losses = 1x1011 moles H2/y). Assuming this large difference represents H2 consumed by microbes (total consumption = 9x1011 moles H2/y), we explore rates of primary production by the chemosynthetic, sub-seafloor biosphere. Although the numbers presented require further examination and future modifications, the analysis suggests that the sub-seafloor H2 budget is similar to the sub-seafloor CH4 budget in the sense that globally significant quantities of both of these reduced gases are produced beneath the seafloor but never escape the seafloor due to microbial consumption.
The third and final component of this dissertation (Chapter 4) explores the self-organization of barchan sand dune fields. In nature, barchan dunes typically exist as members of larger dune fields that display striking, enigmatic structures that cannot be readily explained by examining the dynamics at the scale of single dunes, or by appealing to patterns in external forcing. To explore the possibility that observed structures emerge spontaneously as a collective result of many dunes interacting with each other, we built a numerical model that treats barchans as discrete entities that interact with one another according to simplified rules derived from theoretical and numerical work, and from field observations: Dunes exchange sand through the fluxes that leak from the downwind side of each dune and are captured on their upstream sides; when dunes become sufficiently large, small dunes are born on their downwind sides (“calving”); and when dunes collide directly enough, they merge. Results show that these relatively simple interactions provide potential explanations for a range of field-scale phenomena including isolated patches of dunes and heterogeneous arrangements of similarly sized dunes in denser fields. The results also suggest that (1) dune field characteristics depend on the sand flux fed into the upwind boundary, although (2) moving downwind, the system approaches a common attracting state in which the memory of the upwind conditions vanishes. This work supports the hypothesis that calving exerts a first order control on field-scale phenomena; it prevents individual dunes from growing without bound, as single-dune analyses suggest, and allows the formation of roughly realistic, persistent dune field patterns.
Resumo:
Increasing atmospheric carbon dioxide (CO2) from anthropogenic sources is acidifying marine environments resulting in potentially dramatic consequences for the physical, chemical and biological functioning of these ecosystems. If current trends continue, mean ocean pH is expected to decrease by ~0.2 units over the next ~50 years. Yet, there is also substantial temporal variability in pH and other carbon system parameters in the ocean resulting in regions that already experience change that exceeds long-term projected trends in pH. This points to short-term dynamics as an important layer of complexity on top of long-term trends. Thus, in order to predict future climate change impacts, there is a critical need to characterize the natural range and dynamics of the marine carbonate system and the mechanisms responsible for observed variability. Here, we present pH and dissolved inorganic carbon (DIC) at time intervals spanning 1 hour to >1 year from a dynamic, coastal, temperate marine system (Beaufort Inlet, Beaufort NC USA) to characterize the carbonate system at multiple time scales. Daily and seasonal variation of the carbonate system is largely driven by temperature, alkalinity and the balance between primary production and respiration, but high frequency change (hours to days) is further influenced by water mass movement (e.g. tides) and stochastic events (e.g. storms). Both annual (~0.3 units) and diurnal (~0.1 units) variability in coastal ocean acidity are similar in magnitude to 50 year projections of ocean acidity associated with increasing atmospheric CO2. The environmental variables driving these changes highlight the importance of characterizing the complete carbonate system rather than just pH. Short-term dynamics of ocean carbon parameters may already exert significant pressure on some coastal marine ecosystems with implications for ecology, biogeochemistry and evolution and this shorter term variability layers additive effects and complexity, including extreme values, on top of long-term trends in ocean acidification.
Resumo:
The Moorea Coral Reef Long Term Ecological Research project funded by the US National Science Foundation includes multidisciplinary studies of physical processes driving ecological dynamics across the fringing reef, back reef, and fore reef habitats of Moorea, French Polynesia. A network of oceanographic moorings and a variety of other approaches have been used to investigate the biological and biogeochemical aspects of water transport and retention processes in this system. There is evidence to support the hypothesis that a low-frequency counterclockwise flow around the island is superimposed on the relatively strong alongshore currents on each side of the island. Despite the rapid flow and flushing of the back reef, waters over the reef display chemical and biological characteristics distinct from those offshore. The patterns include higher nutrient and lower dissolved organic carbon concentrations, distinct microbial community compositions among habitats, and reef assemblages of zooplankton that exhibit migration behavior, suggesting multigenerational residence on the reef. Zooplankton consumption by planktivorous fish on the reef reflects both retention of reef-associated taxa and capture by the reef community of resources originating offshore. Coral recruitment and population genetics of reef fishes point to retention of larvae within the system and high recruitment levels from local adult populations. The combined results suggest that a broad suite of physical and biological processes contribute to high retention of externally derived and locally produced organic materials within this island coral reef system. © 2013 by The Oceanography Society. All rights reserved.