19 resultados para biological screening
Resumo:
BACKGROUND: The Affordable Care Act encourages healthcare systems to integrate behavioral and medical healthcare, as well as to employ electronic health records (EHRs) for health information exchange and quality improvement. Pragmatic research paradigms that employ EHRs in research are needed to produce clinical evidence in real-world medical settings for informing learning healthcare systems. Adults with comorbid diabetes and substance use disorders (SUDs) tend to use costly inpatient treatments; however, there is a lack of empirical data on implementing behavioral healthcare to reduce health risk in adults with high-risk diabetes. Given the complexity of high-risk patients' medical problems and the cost of conducting randomized trials, a feasibility project is warranted to guide practical study designs. METHODS: We describe the study design, which explores the feasibility of implementing substance use Screening, Brief Intervention, and Referral to Treatment (SBIRT) among adults with high-risk type 2 diabetes mellitus (T2DM) within a home-based primary care setting. Our study includes the development of an integrated EHR datamart to identify eligible patients and collect diabetes healthcare data, and the use of a geographic health information system to understand the social context in patients' communities. Analysis will examine recruitment, proportion of patients receiving brief intervention and/or referrals, substance use, SUD treatment use, diabetes outcomes, and retention. DISCUSSION: By capitalizing on an existing T2DM project that uses home-based primary care, our study results will provide timely clinical information to inform the designs and implementation of future SBIRT studies among adults with multiple medical conditions.
Resumo:
MOTIVATION: Although many network inference algorithms have been presented in the bioinformatics literature, no suitable approach has been formulated for evaluating their effectiveness at recovering models of complex biological systems from limited data. To overcome this limitation, we propose an approach to evaluate network inference algorithms according to their ability to recover a complex functional network from biologically reasonable simulated data. RESULTS: We designed a simulator to generate data representing a complex biological system at multiple levels of organization: behaviour, neural anatomy, brain electrophysiology, and gene expression of songbirds. About 90% of the simulated variables are unregulated by other variables in the system and are included simply as distracters. We sampled the simulated data at intervals as one would sample from a biological system in practice, and then used the sampled data to evaluate the effectiveness of an algorithm we developed for functional network inference. We found that our algorithm is highly effective at recovering the functional network structure of the simulated system-including the irrelevance of unregulated variables-from sampled data alone. To assess the reproducibility of these results, we tested our inference algorithm on 50 separately simulated sets of data and it consistently recovered almost perfectly the complex functional network structure underlying the simulated data. To our knowledge, this is the first approach for evaluating the effectiveness of functional network inference algorithms at recovering models from limited data. Our simulation approach also enables researchers a priori to design experiments and data-collection protocols that are amenable to functional network inference.
Resumo:
In vitro human tissue engineered human blood vessels (TEBV) that exhibit vasoactivity can be used to test human toxicity of pharmaceutical drug candidates prior to pre-clinical animal studies. TEBVs with 400-800 μM diameters were made by embedding human neonatal dermal fibroblasts or human bone marrow-derived mesenchymal stem cells in dense collagen gel. TEBVs were mechanically strong enough to allow endothelialization and perfusion at physiological shear stresses within 3 hours after fabrication. After 1 week of perfusion, TEBVs exhibited endothelial release of nitric oxide, phenylephrine-induced vasoconstriction, and acetylcholine-induced vasodilation, all of which were maintained up to 5 weeks in culture. Vasodilation was blocked with the addition of the nitric oxide synthase inhibitor L-N(G)-Nitroarginine methyl ester (L-NAME). TEBVs elicited reversible activation to acute inflammatory stimulation by TNF-α which had a transient effect upon acetylcholine-induced relaxation, and exhibited dose-dependent vasodilation in response to caffeine and theophylline. Treatment of TEBVs with 1 μM lovastatin for three days prior to addition of Tumor necrosis factor - α (TNF-α) blocked the injury response and maintained vasodilation. These results indicate the potential to develop a rapidly-producible, endothelialized TEBV for microphysiological systems capable of producing physiological responses to both pharmaceutical and immunological stimuli.