22 resultados para Versus-host-disease
Resumo:
Pathogenic mycobacteria induce the formation of complex cellular aggregates called granulomas that are the hallmark of tuberculosis. Here we examine the development and consequences of vascularization of the tuberculous granuloma in the zebrafish-Mycobacterium marinum infection model, which is characterized by organized granulomas with necrotic cores that bear striking resemblance to those of human tuberculosis. Using intravital microscopy in the transparent larval zebrafish, we show that granuloma formation is intimately associated with angiogenesis. The initiation of angiogenesis in turn coincides with the generation of local hypoxia and transcriptional induction of the canonical pro-angiogenic molecule Vegfaa. Pharmacological inhibition of the Vegf pathway suppresses granuloma-associated angiogenesis, reduces infection burden and limits dissemination. Moreover, anti-angiogenic therapies synergize with the first-line anti-tubercular antibiotic rifampicin, as well as with the antibiotic metronidazole, which targets hypoxic bacterial populations. Our data indicate that mycobacteria induce granuloma-associated angiogenesis, which promotes mycobacterial growth and increases spread of infection to new tissue sites. We propose the use of anti-angiogenic agents, now being used in cancer regimens, as a host-targeting tuberculosis therapy, particularly in extensively drug-resistant disease for which current antibiotic regimens are largely ineffective.
Resumo:
UNLABELLED: The human fungal pathogen Cryptococcus neoformans is capable of infecting a broad range of hosts, from invertebrates like amoebas and nematodes to standard vertebrate models such as mice and rabbits. Here we have taken advantage of a zebrafish model to investigate host-pathogen interactions of Cryptococcus with the zebrafish innate immune system, which shares a highly conserved framework with that of mammals. Through live-imaging observations and genetic knockdown, we establish that macrophages are the primary immune cells responsible for responding to and containing acute cryptococcal infections. By interrogating survival and cryptococcal burden following infection with a panel of Cryptococcus mutants, we find that virulence factors initially identified as important in causing disease in mice are also necessary for pathogenesis in zebrafish larvae. Live imaging of the cranial blood vessels of infected larvae reveals that C. neoformans is able to penetrate the zebrafish brain following intravenous infection. By studying a C. neoformans FNX1 gene mutant, we find that blood-brain barrier invasion is dependent on a known cryptococcal invasion-promoting pathway previously identified in a murine model of central nervous system invasion. The zebrafish-C. neoformans platform provides a visually and genetically accessible vertebrate model system for cryptococcal pathogenesis with many of the advantages of small invertebrates. This model is well suited for higher-throughput screening of mutants, mechanistic dissection of cryptococcal pathogenesis in live animals, and use in the evaluation of therapeutic agents. IMPORTANCE: Cryptococcus neoformans is an important opportunistic pathogen that is estimated to be responsible for more than 600,000 deaths worldwide annually. Existing mammalian models of cryptococcal pathogenesis are costly, and the analysis of important pathogenic processes such as meningitis is laborious and remains a challenge to visualize. Conversely, although invertebrate models of cryptococcal infection allow high-throughput assays, they fail to replicate the anatomical complexity found in vertebrates and, specifically, cryptococcal stages of disease. Here we have utilized larval zebrafish as a platform that overcomes many of these limitations. We demonstrate that the pathogenesis of C. neoformans infection in zebrafish involves factors identical to those in mammalian and invertebrate infections. We then utilize the live-imaging capacity of zebrafish larvae to follow the progression of cryptococcal infection in real time and establish a relevant model of the critical central nervous system infection phase of disease in a nonmammalian model.
Resumo:
BACKGROUND: RA and CVD both have inflammation as part of the underlying biology. Our objective was to explore the relationships of GlycA, a measure of glycosylated acute phase proteins, with inflammation and cardiometabolic risk in RA, and explore whether these relationships were similar to those for persons without RA. METHODS: Plasma GlycA was determined for 50 individuals with mild-moderate RA disease activity and 39 controls matched for age, gender, and body mass index (BMI). Regression analyses were performed to assess relationships between GlycA and important markers of traditional inflammation and cardio-metabolic health: inflammatory cytokines, disease activity, measures of adiposity and insulin resistance. RESULTS: On average, RA activity was low (DAS-28 = 3.0 ± 1.4). Traditional inflammatory markers, ESR, hsCRP, IL-1β, IL-6, IL-18 and TNF-α were greater in RA versus controls (P < 0.05 for all). GlycA concentrations were significantly elevated in RA versus controls (P = 0.036). In RA, greater GlycA associated with disease activity (DAS-28; RDAS-28 = 0.5) and inflammation (RESR = 0.7, RhsCRP = 0.7, RIL-6 = 0.3: P < 0.05 for all); in BMI-matched controls, these inflammatory associations were absent or weaker (hsCRP), but GlycA was related to IL-18 (RhsCRP = 0.3, RIL-18 = 0.4: P < 0.05). In RA, greater GlycA associated with more total abdominal adiposity and less muscle density (Rabdominal-adiposity = 0.3, Rmuscle-density = -0.3, P < 0.05 for both). In BMI-matched controls, GlycA associated with more cardio-metabolic markers: BMI, waist circumference, adiposity measures and insulin resistance (R = 0.3-0.6, P < 0.05 for all). CONCLUSIONS: GlycA provides an integrated measure of inflammation with contributions from traditional inflammatory markers and cardio-metabolic sources, dominated by inflammatory markers in persons with RA and cardio-metabolic factors in those without.
Resumo:
RNA viruses are an important cause of global morbidity and mortality. The rapid evolutionary rates of RNA virus pathogens, caused by high replication rates and error-prone polymerases, can make the pathogens difficult to control. RNA viruses can undergo immune escape within their hosts and develop resistance to the treatment and vaccines we design to fight them. Understanding the spread and evolution of RNA pathogens is essential for reducing human suffering. In this dissertation, I make use of the rapid evolutionary rate of viral pathogens to answer several questions about how RNA viruses spread and evolve. To address each of the questions, I link mathematical techniques for modeling viral population dynamics with phylogenetic and coalescent techniques for analyzing and modeling viral genetic sequences and evolution. The first project uses multi-scale mechanistic modeling to show that decreases in viral substitution rates over the course of an acute infection, combined with the timing of infectious hosts transmitting new infections to susceptible individuals, can account for discrepancies in viral substitution rates in different host populations. The second project combines coalescent models with within-host mathematical models to identify driving evolutionary forces in chronic hepatitis C virus infection. The third project compares the effects of intrinsic and extrinsic viral transmission rate variation on viral phylogenies.
Resumo:
Dengue is an important vector-borne virus that infects on the order of 400 million individuals per year. Infection with one of the virus's four serotypes (denoted DENV-1 to 4) may be silent, result in symptomatic dengue 'breakbone' fever, or develop into the more severe dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). Extensive research has therefore focused on identifying factors that influence dengue infection outcomes. It has been well-documented through epidemiological studies that DHF is most likely to result from a secondary heterologous infection, and that individuals experiencing a DENV-2 or DENV-3 infection typically are more likely to present with more severe dengue disease than those individuals experiencing a DENV-1 or DENV-4 infection. However, a mechanistic understanding of how these risk factors affect disease outcomes, and further, how the virus's ability to evolve these mechanisms will affect disease severity patterns over time, is lacking. In the second chapter of my dissertation, I formulate mechanistic mathematical models of primary and secondary dengue infections that describe how the dengue virus interacts with the immune response and the results of this interaction on the risk of developing severe dengue disease. I show that only the innate immune response is needed to reproduce characteristic features of a primary infection whereas the adaptive immune response is needed to reproduce characteristic features of a secondary dengue infection. I then add to these models a quantitative measure of disease severity that assumes immunopathology, and analyze the effectiveness of virological indicators of disease severity. In the third chapter of my dissertation, I then statistically fit these mathematical models to viral load data of dengue patients to understand the mechanisms that drive variation in viral load. I specifically consider the roles that immune status, clinical disease manifestation, and serotype may play in explaining viral load variation observed across the patients. With this analysis, I show that there is statistical support for the theory of antibody dependent enhancement in the development of severe disease in secondary dengue infections and that there is statistical support for serotype-specific differences in viral infectivity rates, with infectivity rates of DENV-2 and DENV-3 exceeding those of DENV-1. In the fourth chapter of my dissertation, I integrate these within-host models with a vector-borne epidemiological model to understand the potential for virulence evolution in dengue. Critically, I show that dengue is expected to evolve towards intermediate virulence, and that the optimal virulence of the virus depends strongly on the number of serotypes that co-circulate. Together, these dissertation chapters show that dengue viral load dynamics provide insight into the within-host mechanisms driving differences in dengue disease patterns and that these mechanisms have important implications for dengue virulence evolution.
Resumo:
Acute respiratory infections caused by bacterial or viral pathogens are among the most common reasons for seeking medical care. Despite improvements in pathogen-based diagnostics, most patients receive inappropriate antibiotics. Host response biomarkers offer an alternative diagnostic approach to direct antimicrobial use. This observational cohort study determined whether host gene expression patterns discriminate noninfectious from infectious illness and bacterial from viral causes of acute respiratory infection in the acute care setting. Peripheral whole blood gene expression from 273 subjects with community-onset acute respiratory infection (ARI) or noninfectious illness, as well as 44 healthy controls, was measured using microarrays. Sparse logistic regression was used to develop classifiers for bacterial ARI (71 probes), viral ARI (33 probes), or a noninfectious cause of illness (26 probes). Overall accuracy was 87% (238 of 273 concordant with clinical adjudication), which was more accurate than procalcitonin (78%, P < 0.03) and three published classifiers of bacterial versus viral infection (78 to 83%). The classifiers developed here externally validated in five publicly available data sets (AUC, 0.90 to 0.99). A sixth publicly available data set included 25 patients with co-identification of bacterial and viral pathogens. Applying the ARI classifiers defined four distinct groups: a host response to bacterial ARI, viral ARI, coinfection, and neither a bacterial nor a viral response. These findings create an opportunity to develop and use host gene expression classifiers as diagnostic platforms to combat inappropriate antibiotic use and emerging antibiotic resistance.
Resumo:
BACKGROUND: Observational studies evaluating the possible interaction between proton pump inhibitors (PPIs) and clopidogrel have shown mixed results. We conducted a systematic review comparing the safety of individual PPIs in patients with coronary artery disease taking clopidogrel. METHODS AND RESULTS: Studies performed from January 1995 to December 2013 were screened for inclusion. Data were extracted, and study quality was graded for 34 potential studies. For those studies in which follow-up period, outcomes, and multivariable adjustment were comparable, meta-analysis was performed.The adjusted odds or hazard ratios for the composite of cardiovascular or all-cause death, myocardial infarction, and stroke at 1 year were reported in 6 observational studies with data on individual PPIs. Random-effects meta-analyses of the 6 studies revealed an increased risk for adverse cardiovascular events for those taking pantoprazole (hazard ratio 1.38; 95% CI 1.12-1.70), lansoprazole (hazard ratio 1.29; 95% CI 1.09-1.52), or esomeprazole (hazard ratio 1.27; 95% CI 1.02-1.58) compared with patients on no PPI. This association was not significant for omeprazole (hazard ratio 1.16; 95% CI 0.93-1.44). Sensitivity analyses for the coronary artery disease population (acute coronary syndrome versus mixed) and exclusion of a single study due to heterogeneity of reported results did not have significant influence on the effect estimates for any PPIs. CONCLUSIONS: Several frequently used PPIs previously thought to be safe for concomitant use with clopidogrel were associated with greater risk of adverse cardiovascular events. Although the data are observational, they highlight the need for randomized controlled trials to evaluate the safety of concomitant PPI and clopidogrel use in patients with coronary artery disease.