31 resultados para Receiver function


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostate growth is dependent on circulating androgens, which can be influenced by hepatic function. Liver disease has been suggested to influence prostate cancer (CaP) incidence. However, the effect of hepatic function on CaP outcomes has not been investigated. A total of 1181 patients who underwent radical prostatectomy (RP) between 1988 and 2008 at four Veterans Affairs hospitals that comprise the Shared Equal Access Regional Cancer Hospital database and had available liver function test (LFT) data were included in the study. Independent associations of LFTs with unfavorable pathological features and biochemical recurrence were determined using logistic and Cox regression analyses. Serum glutamic oxaloacetic transaminase (SGOT) and serum glutamic pyruvic transaminase (SGPT) levels were elevated in 8.2 and 4.4% of patients, respectively. After controlling for CaP features, logistic regression revealed a significant association between SGOT levels and pathological Gleason sum > or =7(4+3) cancer (odds ratio=2.12; 95% confidence interval=1.11-4.05; P=0.02). Mild hepatic dysfunction was significantly associated with adverse CaP grade, but was not significantly associated with other adverse pathological features or biochemical recurrence in a cohort of men undergoing RP. The effect of moderate-to-severe liver disease on disease outcomes in CaP patients managed non-surgically remains to be investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kidney's major role in filtration depends on its high blood flow, concentrating mechanisms, and biochemical activation. The kidney's greatest strengths also lead to vulnerability for drug-induced nephrotoxicity and other renal injuries. The current standard to diagnose renal injuries is with a percutaneous renal biopsy, which can be biased and insufficient. In one particular case, biopsy of a kidney with renal cell carcinoma can actually initiate metastasis. Tools that are sensitive and specific to detect renal disease early are essential, especially noninvasive diagnostic imaging. While other imaging modalities (ultrasound and x-ray/CT) have their unique advantages and disadvantages, MRI has superb soft tissue contrast without ionizing radiation. More importantly, there is a richness of contrast mechanisms in MRI that has yet to be explored and applied to study renal disease.

The focus of this work is to advance preclinical imaging tools to study the structure and function of the renal system. Studies were conducted in normal and disease models to understand general renal physiology as well as pathophysiology. This dissertation is separated into two parts--the first is the identification of renal architecture with ex vivo MRI; the second is the characterization of renal dynamics and function with in vivo MRI. High resolution ex vivo imaging provided several opportunities including: 1) identification of fine renal structures, 2) implementation of different contrast mechanisms with several pulse sequences and reconstruction methods, 3) development of image-processing tools to extract regions and structures, and 4) understanding of the nephron structures that create MR contrast and that are important for renal physiology. The ex vivo studies allowed for understanding and translation to in vivo studies. While the structure of this dissertation is organized by individual projects, the goal is singular: to develop magnetic resonance imaging biomarkers for renal system.

The work presented here includes three ex vivo studies and two in vivo studies:

1) Magnetic resonance histology of age-related nephropathy in sprague dawley.

2) Quantitative susceptibility mapping of kidney inflammation and fibrosis in type 1 angiotensin receptor-deficient mice.

3) Susceptibility tensor imaging of the kidney and its microstructural underpinnings.

4) 4D MRI of renal function in the developing mouse.

5) 4D MRI of polycystic kidneys in rapamycin treated Glis3-deficient mice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light is a critical environmental signal that regulates every phase of the plant life cycle, from germination to floral initiation. Of the many light receptors in the model plant Arabidopsis thaliana, the red- and far-red light-sensing phytochromes (phys) are arguably the best studied, but the earliest events in the phy signaling pathway remain poorly understood. One of the earliest phy signaling events is the translocation of photoactivated phys from the cytoplasm to the nucleus, where they localize to subnuclear foci termed photobodies; in continuous light, photobody localization correlates closely with the light-dependent inhibition of embryonic stem growth. Despite a growing body of evidence supporting the biological significance of photobodies in light signaling, photobodies have also been shown to be dispensable for seedling growth inhibition in continuous light, so their physiological importance remains controversial; additionally, the molecular components that are required for phy localization to photobodies are largely unknown. The overall goal of my dissertation research was to gain insight into the early steps of phy signaling by further defining the role of photobodies in this process and identifying additional intragenic and extragenic requirements for phy localization to photobodies.

Even though the domain structure of phys has been extensively studied, not all of the intramolecular requirements for phy localization to photobodies are known. Previous studies have shown that the entire C-terminus of phys is both necessary and sufficient for their localization to photobodies. However, the importance of the individual subdomains of the C-terminus is still unclear. For example a truncation lacking part of the most C-terminal domain, the histidine kinase-related domain (HKRD), can still localize to small photobodies in the light and behaves like a weak allele. However, a point mutation within the HKRD renders the entire molecule completely inactive. To resolve this discrepancy, I explored the hypothesis that this point mutation might impair the dimerization of the HKRD; dimerization has been shown to occur via the C-terminus of phy and is required for more efficient signaling. I show that this point mutation impairs nuclear localization of phy as well as its subnuclear localization to photobodies. Additionally, yeast-two-hybrid analysis shows that the wild-type HKRD can homodimerize but that the HKRD containing the point mutation fails to dimerize with both itself and with wild-type HKRD. These results demonstrate that dimerization of the HKRD is required for both nuclear and photobody localization of phy.

Studies of seedlings grown in diurnal conditions show that photoactivated phy can persist into darkness to repress seedling growth; a seedling's growth rate is therefore fastest at the end of the night. To test the idea that photobodies could be involved in regulating seedling growth in the dark, I compared the growth of two transgenic Arabidopsis lines, one in which phy can localize to photobodies (PBG), and one in which it cannot (NGB). Despite these differences in photobody morphology, both lines are capable of transducing light signals and inhibiting seedling growth in continuous light. After the transition from red light to darkness, the PBG line was able to repress seedling growth, as well as the accumulation of the growth-promoting, light-labile transcription factor PHYTOCHROME INTERACTING FACTOR 3 (PIF3), for eighteen hours, and this correlated perfectly with the presence of photobodies. Reducing the amount of active phy by either reducing the light intensity or adding a phy-inactivating far-red pulse prior to darkness led to faster accumulation of PIF3 and earlier seedling growth. In contrast, the NGB line accumulated PIF3 even in the light, and seedling growth was only repressed for six hours; this behavior was similar in NGB regardless of the light treatment. These results suggest that photobodies are required for the degradation of PIF3 and for the prolonged stabilization of active phy in darkness. They also support the hypothesis that photobody localization of phys could serve as an instructive cue during the light-to-dark transition, thereby fine-tuning light-dependent responses in darkness.

In addition to determining an intragenic requirement for photobody localization and further exploring the significance of photobodies in phy signaling, I wanted to identify extragenic regulators of photobody localization. A recent study identified one such factor, HEMERA (HMR); hmr mutants do not form large photobodies, and they are tall and albino in the light. To identify other components in the HMR-mediated branch of the phy signaling pathway, I performed a forward genetic screen for suppressors of a weak hmr allele. Surprisingly, the first three mutants isolated from the screen were alleles of the same novel gene, SON OF HEMERA (SOH). The soh mutations rescue all of the phenotypes associated with the weak hmr allele, and they do so in an allele-specific manner, suggesting a direct interaction between SOH and HMR. Null soh alleles, which were isolated in an independent, tall, albino screen, are defective in photobody localization, demonstrating that SOH is an extragenic regulator of phy localization to photobodies that works in the same genetic pathway as HMR.

In this work, I show that dimerization of the HKRD is required for both the nuclear and photobody localization of phy. I also demonstrate a tight correlation between photobody localization and PIF3 degradation, further establishing the significance of photobodies in phy signaling. Finally, I identify a novel gene, SON OF HEMERA, whose product is necessary for phy localization to photobodies in the light, thereby isolating a new extragenic determinant of photobody localization. These results are among the first to focus exclusively on one of the earliest cellular responses to light - photobody localization of phys - and they promise to open up new avenues into the study of a poorly understood facet of the phy signaling pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The size, shape, and connectivity of water bodies (lakes, ponds, and wetlands) can have important effects on ecological communities and ecosystem processes, but how these characteristics are influenced by land use and land cover change over broad spatial scales is not known. Intensive alteration of water bodies during urban development, including construction, burial, drainage, and reshaping, may select for certain morphometric characteristics and influence the types of water bodies present in cities. We used a database of over one million water bodies in 100 cities across the conterminous United States to compare the size distributions, connectivity (as intersection with surface flow lines), and shape (as measured by shoreline development factor) of water bodies in different land cover classes. Water bodies in all urban land covers were dominated by lakes and ponds, while reservoirs and wetlands comprised only a small fraction of the sample. In urban land covers, as compared to surrounding undeveloped land, water body size distributions converged on moderate sizes, shapes toward less tortuous shorelines, and the number and area of water bodies that intersected surface flow lines (i.e., streams and rivers) decreased. Potential mechanisms responsible for changing the characteristics of urban water bodies include: preferential removal, physical reshaping or addition of water bodies, and selection of locations for development. The relative contributions of each mechanism likely change as cities grow. The larger size and reduced surface connectivity of urban water bodies may affect the role of internal dynamics and sensitivity to catchment processes. More broadly, these results illustrate the complex nature of urban watersheds and highlight the need to develop a conceptual framework for urban water bodies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The short arms of the ten acrocentric human chromosomes share several repetitive DNAs, including ribosomal RNA genes (rDNA). The rDNA arrays correspond to nucleolar organizing regions that coalesce each cell cycle to form the nucleolus. Telomere disruption by expressing a mutant version of telomere binding protein TRF2 (dnTRF2) causes non-random acrocentric fusions, as well as large-scale nucleolar defects. The mechanisms responsible for acrocentric chromosome sensitivity to dysfunctional telomeres are unclear. In this study, we show that TRF2 normally associates with the nucleolus and rDNA. However, when telomeres are crippled by dnTRF2 or RNAi knockdown of TRF2, gross nucleolar and chromosomal changes occur. We used the controllable dnTRF2 system to precisely dissect the timing and progression of nucleolar and chromosomal instability induced by telomere dysfunction, demonstrating that nucleolar changes precede the DNA damage and morphological changes that occur at acrocentric short arms. The rDNA repeat arrays on the short arms decondense, and are coated by RNA polymerase I transcription binding factor UBF, physically linking acrocentrics to one another as they become fusogenic. These results highlight the importance of telomere function in nucleolar stability and structural integrity of acrocentric chromosomes, particularly the rDNA arrays. Telomeric stress is widely accepted to cause DNA damage at chromosome ends, but our findings suggest that it also disrupts chromosome structure beyond the telomere region, specifically within the rDNA arrays located on acrocentric chromosomes. These results have relevance for Robertsonian translocation formation in humans and mechanisms by which acrocentric-acrocentric fusions are promoted by DNA damage and repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: A study was undertaken to determine whether better cognitive functioning at midlife among more physically fit individuals reflects neuroprotection, by which fitness protects against age-related cognitive decline, or neuroselection, by which children with higher cognitive functioning select more active lifestyles. METHODS: Children in the Dunedin Longitudinal Study (N = 1,037) completed the Wechsler Intelligence Scales and the Trail Making, Rey Delayed Recall, and Grooved Pegboard tasks as children and again at midlife (age = 38 years). Adult cardiorespiratory fitness was assessed using a submaximal exercise test to estimate maximum oxygen consumption adjusted for body weight in milliliters/minute/kilogram. We tested whether more fit individuals had better cognitive functioning than their less fit counterparts (which could be consistent with neuroprotection), and whether better childhood cognitive functioning predisposed to better adult cardiorespiratory fitness (neuroselection). Finally, we examined possible mechanisms of neuroselection. RESULTS: Participants with better cardiorespiratory fitness had higher cognitive test scores at midlife. However, fitness-associated advantages in cognitive functioning were already present in childhood. After accounting for childhood baseline performance on the same cognitive tests, there was no association between cardiorespiratory fitness and midlife cognitive functioning. Socioeconomic and health advantages in childhood and healthier lifestyles during young adulthood explained most of the association between childhood cognitive functioning and adult cardiorespiratory fitness. INTERPRETATION: We found no evidence for a neuroprotective effect of cardiorespiratory fitness as of midlife. Instead, children with better cognitive functioning are selecting healthier lives. Fitness interventions may enhance cognitive functioning. However, observational and experimental studies testing neuroprotective effects of physical fitness should consider confounding by neuroselection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Blocking leukocyte function-associated antigen (LFA)-1 in organ transplant recipients prolongs allograft survival. However, the precise mechanisms underlying the therapeutic potential of LFA-1 blockade in preventing chronic rejection are not fully elucidated. Cardiac allograft vasculopathy (CAV) is the preeminent cause of late cardiac allograft failure characterized histologically by concentric intimal hyperplasia. METHODS: Anti-LFA-1 monoclonal antibody was used in a multiple minor antigen-mismatched, BALB.B (H-2B) to C57BL/6 (H-2B), cardiac allograft model. Endogenous donor-specific CD8 T cells were tracked down using major histocompatibility complex multimers against the immunodominant H4, H7, H13, H28, and H60 minor Ags. RESULTS: The LFA-1 blockade prevented acute rejection and preserved palpable beating quality with reduced CD8 T-cell graft infiltration. Interestingly, less CD8 T cell infiltration was secondary to reduction of T-cell expansion rather than less trafficking. The LFA-1 blockade significantly suppressed the clonal expansion of minor histocompatibility antigen-specific CD8 T cells during the expansion and contraction phase. The CAV development was evaluated with morphometric analysis at postoperation day 100. The LFA-1 blockade profoundly attenuated neointimal hyperplasia (61.6 vs 23.8%; P < 0.05), CAV-affected vessel number (55.3 vs 15.9%; P < 0.05), and myocardial fibrosis (grade 3.29 vs 1.8; P < 0.05). Finally, short-term LFA-1 blockade promoted long-term donor-specific regulation, which resulted in attenuated transplant arteriosclerosis. CONCLUSIONS: Taken together, LFA-1 blockade inhibits initial endogenous alloreactive T-cell expansion and induces more regulation. Such a mechanism supports a pulse tolerance induction strategy with anti-LFA-1 rather than long-term treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2014 The Authors.Caenorhabditis elegans larvae reversibly arrest development in the first larval stage in response to starvation (L1 arrest or L1 diapause). Insulin-like signaling is a critical regulator of L1 arrest. However, the C. elegans genome encodes 40 insulin-like peptides, and it is unknown which peptides participate in nutritional control of L1 development. Work in other contexts has revealed that insulin-like genes can promote development ("agonists") or developmental arrest ("antagonists"), suggesting that such agonists promote L1 development in response to feeding. We measured mRNA expression dynamics with high temporal resolution for all 40 insulin-like genes during entry into and recovery from L1 arrest. Nutrient availability influences expression of the majority of insulin-like genes, with variable dynamics suggesting complex regulation. We identified thirteen candidate agonists and eight candidate antagonists based on expression in response to nutrient availability. We selected ten candidate agonists (. daf-28, ins-3, ins-4, ins-5, ins-6, ins-7, ins-9, ins-26, ins-33 and ins-35) for further characterization in L1 stage larvae. We used destabilized reporter genes to determine spatial expression patterns. Expression of candidate agonists is largely overlapping in L1 stage larvae, suggesting a role of the intestine, chemosensory neurons ASI and ASJ, and the interneuron PVT in control of L1 development. Transcriptional regulation of candidate agonists is most significant in the intestine, as if internal nutrient status is a more important influence on transcription than sensory perception. Phenotypic analysis of single and compound deletion mutants did not reveal effects on L1 developmental dynamics, though simultaneous disruption of ins-4 and daf-28 increases survival of L1 arrest. Furthermore, overexpression of ins-4, ins-6 or daf-28 alone decreases survival and promotes cell division during starvation. These results suggest extensive functional overlap among insulin-like genes in nutritional control of L1 development while highlighting the role of ins-4, daf-28 and to a lesser extent ins-6.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Breastfeeding is a leading cause of infant HIV-1 infection in the developing world, yet only a minority of infants exposed to HIV-1 via breastfeeding become infected. As a genetic bottleneck severely restricts the number of postnatally-transmitted variants, genetic or phenotypic properties of the virus Envelope (Env) could be important for the establishment of infant infection. We examined the efficiency of virologic functions required for initiation of infection in the gastrointestinal tract and the neutralization sensitivity of HIV-1 Env variants isolated from milk of three postnatally-transmitting mothers (n = 13 viruses), five clinically-matched nontransmitting mothers (n = 16 viruses), and seven postnatally-infected infants (n = 7 postnatally-transmitted/founder (T/F) viruses). RESULTS: There was no difference in the efficiency of epithelial cell interactions between Env virus variants from the breast milk of transmitting and nontransmitting mothers. Moreover, there was similar efficiency of DC-mediated trans-infection, CCR5-usage, target cell fusion, and infectivity between HIV-1 Env-pseudoviruses from nontransmitting mothers and postnatal T/F viruses. Milk Env-pseudoviruses were generally sensitive to neutralization by autologous maternal plasma and resistant to breast milk neutralization. Infant T/F Env-pseudoviruses were equally sensitive to neutralization by broadly-neutralizing monoclonal and polyclonal antibodies as compared to nontransmitted breast milk Env variants. CONCLUSION: Postnatally-T/F Env variants do not appear to possess a superior ability to interact with and cross a mucosal barrier or an exceptional resistance to neutralization that define their capability to initiate infection across the infant gastrointestinal tract in the setting of preexisting maternal antibodies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: Although the Dietary Approaches to Stop Hypertension (DASH) diet lowers blood pressure in adults with hypertension, how kidney function impacts this effect is not known. We evaluated whether Estimated Glomerular Filtration Rate (eGFR) modifies the effect of the DASH diet on blood pressure, markers of mineral metabolism, and markers of kidney function. METHODS: Secondary analysis of the DASH-Sodium trial, a multicenter, randomized, controlled human feeding study that evaluated the blood pressure lowering effect of the DASH diet at three levels of sodium intake. Data from 92 participants with pre-hypertension or stage 1 hypertension during the 3450 mg /day sodium diet assignment contributed to this analysis. Stored frozen plasma and urine specimens were used to measure kidney related laboratory outcomes. RESULTS: Effects of the DASH diet on blood pressure, phosphorus, intact parathyroid hormone, creatinine, and albuminuria were not modified by baseline eGFR (mean 84.5 ± 18.0 ml/min/1.73 m(2), range 44.1 to 138.6 ml/min/1.73 m(2)) or the presence of chronic kidney disease (N=13%). CONCLUSIONS: The impact of the DASH diet on blood pressure, markers of mineral metabolism, and markers of kidney function does not appear to be modified by eGFR in this small subset of DASH-Sodium trial participants with relatively preserved kidney function. Whether greater reduction in eGFR modifies the effects of DASH on kidney related measures is yet to be determined. A larger study in individuals with more advanced kidney disease is needed to establish the efficacy and safety of the DASH diet in this patient population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of GTPase-activating protein (GAP) that deactivates ADP-ribosylation factor 1 (ARF1) during the formation of coat protein I (COPI) vesicles has been unclear. GAP is originally thought to antagonize vesicle formation by triggering uncoating, but later studies suggest that GAP promotes cargo sorting, a process that occurs during vesicle formation. Recent models have attempted to reconcile these seemingly contradictory roles by suggesting that cargo proteins suppress GAP activity during vesicle formation, but whether GAP truly antagonizes coat recruitment in this process has not been assessed directly. We have reconstituted the formation of COPI vesicles by incubating Golgi membrane with purified soluble components, and find that ARFGAP1 in the presence of GTP promotes vesicle formation and cargo sorting. Moreover, the presence of GTPgammaS not only blocks vesicle uncoating but also vesicle formation by preventing the proper recruitment of GAP to nascent vesicles. Elucidating how GAP functions in vesicle formation, we find that the level of GAP on the reconstituted vesicles is at least as abundant as COPI and that GAP binds directly to the dilysine motif of cargo proteins. Collectively, these findings suggest that ARFGAP1 promotes vesicle formation by functioning as a component of the COPI coat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The zinc-finger protein Rotund (Rn) plays a critical role in controlling the development of the fly olfactory system. However, little is known about its molecular function in vivo. Here, we added protein tags to the rn locus using CRISPR-Cas9 technology in Drosophila to investigate its subcellular localization and the genes that it regulates . We previously used a reporter construct to show that rn is expressed in a subset of olfactory receptor neuron (ORN) precursors and it is required for the diversification of ORN fates. Here, we show that tagged endogenous Rn protein is functional based on the analysis of ORN phenotypes. Using this method, we also mapped the expression pattern of the endogenous isoform-specific tags in vivo with increased precision. Comparison of the Rn expression pattern from this study with previously published results using GAL4 reporters showed that Rn is mainly present in early steps in antennal disc patterning, but not in pupal stages when ORNs are born. Finally, using chromatin immunoprecipitation, we showed a direct binding of Rotund to a previously identified regulatory element upstream of the bric-a-brac gene locus in the developing antennal disc.