18 resultados para Panvinio, Onofrio, 1529-1568.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Some of the 600,000 patients with solid organ allotransplants need reconstruction with a composite tissue allotransplant, such as the hand, abdominal wall, or face. The aim of this study was to develop a rat model for assessing the effects of a secondary composite tissue allotransplant on a primary heart allotransplant. METHODS: Hearts of Wistar Kyoto rats were harvested and transplanted heterotopically to the neck of recipient Fisher 344 rats. The anastomoses were performed between the donor brachiocephalic artery and the recipient left common carotid artery, and between the donor pulmonary artery and the recipient external jugular vein. Recipients received cyclosporine A for 10 days only. Heart rate was assessed noninvasively. The sequential composite tissue allotransplant consisted of a 3 x 3-cm abdominal musculocutaneous flap harvested from Lewis rats and transplanted to the abdomen of the heart allotransplant recipients. The abdominal flap vessels were connected to the femoral vessels. No further immunosuppression was administered following the composite tissue allotransplant. Ten days after composite tissue allotransplantation, rejection of the heart and abdominal flap was assessed histologically. RESULTS: The rat survival rate of the two-stage transplant surgery was 80 percent. The transplanted heart rate decreased from 150 +/- 22 beats per minute immediately after transplant to 83 +/- 12 beats per minute on day 20 (10 days after stopping immunosuppression). CONCLUSIONS: This sequential allotransplant model is technically demanding. It will facilitate investigation of the effects of a secondary composite tissue allotransplant following primary solid organ transplantation and could be useful in developing future immunotherapeutic strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

UNLABELLED: Response inhibition is a key component of executive control, but its relation to other cognitive processes is not well understood. We recently documented the "inhibition-induced forgetting effect": no-go cues are remembered more poorly than go cues. We attributed this effect to central-resource competition, whereby response inhibition saps attention away from memory encoding. However, this proposal is difficult to test with behavioral means alone. We therefore used fMRI in humans to test two neural predictions of the "common resource hypothesis": (1) brain regions associated with response inhibition should exhibit greater resource demands during encoding of subsequently forgotten than remembered no-go cues; and (2) this higher inhibitory resource demand should lead to memory encoding regions having less resources available during encoding of subsequently forgotten no-go cues. Participants categorized face stimuli by gender in a go/no-go task and, following a delay, performed a surprise recognition memory test for those faces. Replicating previous findings, memory was worse for no-go than for go stimuli. Crucially, forgetting of no-go cues was predicted by high inhibitory resource demand, as quantified by the trial-by-trial ratio of activity in neural "no-go" versus "go" networks. Moreover, this index of inhibitory demand exhibited an inverse trial-by-trial relationship with activity in brain regions responsible for the encoding of no-go cues into memory, notably the ventrolateral prefrontal cortex. This seesaw pattern between the neural resource demand of response inhibition and activity related to memory encoding directly supports the hypothesis that response inhibition temporarily saps attentional resources away from stimulus processing. SIGNIFICANCE STATEMENT: Recent behavioral experiments showed that inhibiting a motor response to a stimulus (a "no-go cue") impairs subsequent memory for that cue. Here, we used fMRI to test whether this "inhibition-induced forgetting effect" is caused by competition for neural resources between the processes of response inhibition and memory encoding. We found that trial-by-trial variations in neural inhibitory resource demand predicted subsequent forgetting of no-go cues and that higher inhibitory demand was furthermore associated with lower concurrent activation in brain regions responsible for successful memory encoding of no-go cues. Thus, motor inhibition and stimulus encoding appear to compete with each other: when more resources have to be devoted to inhibiting action, less are available for encoding sensory stimuli.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Practice can improve performance on visual search tasks; the neural mechanisms underlying such improvements, however, are not clear. Response time typically shortens with practice, but which components of the stimulus-response processing chain facilitate this behavioral change? Improved search performance could result from enhancements in various cognitive processing stages, including (1) sensory processing, (2) attentional allocation, (3) target discrimination, (4) motor-response preparation, and/or (5) response execution. We measured event-related potentials (ERPs) as human participants completed a five-day visual-search protocol in which they reported the orientation of a color popout target within an array of ellipses. We assessed changes in behavioral performance and in ERP components associated with various stages of processing. After practice, response time decreased in all participants (while accuracy remained consistent), and electrophysiological measures revealed modulation of several ERP components. First, amplitudes of the early sensory-evoked N1 component at 150 ms increased bilaterally, indicating enhanced visual sensory processing of the array. Second, the negative-polarity posterior-contralateral component (N2pc, 170-250 ms) was earlier and larger, demonstrating enhanced attentional orienting. Third, the amplitude of the sustained posterior contralateral negativity component (SPCN, 300-400 ms) decreased, indicating facilitated target discrimination. Finally, faster motor-response preparation and execution were observed after practice, as indicated by latency changes in both the stimulus-locked and response-locked lateralized readiness potentials (LRPs). These electrophysiological results delineate the functional plasticity in key mechanisms underlying visual search with high temporal resolution and illustrate how practice influences various cognitive and neural processing stages leading to enhanced behavioral performance.