36 resultados para Neural stimulation.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determining how information flows along anatomical brain pathways is a fundamental requirement for understanding how animals perceive their environments, learn, and behave. Attempts to reveal such neural information flow have been made using linear computational methods, but neural interactions are known to be nonlinear. Here, we demonstrate that a dynamic Bayesian network (DBN) inference algorithm we originally developed to infer nonlinear transcriptional regulatory networks from gene expression data collected with microarrays is also successful at inferring nonlinear neural information flow networks from electrophysiology data collected with microelectrode arrays. The inferred networks we recover from the songbird auditory pathway are correctly restricted to a subset of known anatomical paths, are consistent with timing of the system, and reveal both the importance of reciprocal feedback in auditory processing and greater information flow to higher-order auditory areas when birds hear natural as opposed to synthetic sounds. A linear method applied to the same data incorrectly produces networks with information flow to non-neural tissue and over paths known not to exist. To our knowledge, this study represents the first biologically validated demonstration of an algorithm to successfully infer neural information flow networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcranial magnetic stimulation (TMS) is a widely used, noninvasive method for stimulating nervous tissue, yet its mechanisms of effect are poorly understood. Here we report new methods for studying the influence of TMS on single neurons in the brain of alert non-human primates. We designed a TMS coil that focuses its effect near the tip of a recording electrode and recording electronics that enable direct acquisition of neuronal signals at the site of peak stimulus strength minimally perturbed by stimulation artifact in awake monkeys (Macaca mulatta). We recorded action potentials within ∼1 ms after 0.4-ms TMS pulses and observed changes in activity that differed significantly for active stimulation as compared with sham stimulation. This methodology is compatible with standard equipment in primate laboratories, allowing easy implementation. Application of these tools will facilitate the refinement of next generation TMS devices, experiments and treatment protocols.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study combines for the first time two major approaches to understanding the function and structure of neural circuits: large-scale multielectrode recordings, and confocal imaging of labeled neurons. To achieve this end, we develop a novel approach to the central problem of anatomically identifying recorded cells, based on the electrical image: the spatiotemporal pattern of voltage deflections induced by spikes on a large-scale, high-density multielectrode array. Recordings were performed from identified ganglion cell types in the macaque retina. Anatomical images of cells in the same preparation were obtained using virally transfected fluorescent labeling or by immunolabeling after fixation. The electrical image was then used to locate recorded cell somas, axon initial segments, and axon trajectories, and these signatures were used to identify recorded cells. Comparison of anatomical and physiological measurements permitted visualization and physiological characterization of numerically dominant ganglion cell types with high efficiency in a single preparation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Posttraumatic stress disorder (PTSD) affects the functional recruitment and connectivity between neural regions during autobiographical memory (AM) retrieval that overlap with default and control networks. Whether such univariate changes relate to potential differences in the contributions of the large-scale neural networks supporting cognition in PTSD is unknown. In the present functional MRI study, we employed independent-component analysis to examine the influence of the engagement of neural networks during the recall of personal memories in a PTSD group (15 participants) as compared to non-trauma-exposed healthy controls (14 participants). We found that the PTSD group recruited similar neural networks when compared to the controls during AM recall, including default-network subsystems and control networks, but group differences emerged in the spatial and temporal characteristics of these networks. First, we found spatial differences in the contributions of the anterior and posterior midline across the networks, and of the amygdala in particular, for the medial temporal subsystem of the default network. Second, we found temporal differences within the medial prefrontal subsystem of the default network, with less temporal coupling of this network during AM retrieval in PTSD relative to controls. These findings suggest that the spatial and temporal characteristics of the default and control networks potentially differ in a PTSD group versus healthy controls and contribute to altered recall of personal memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How do separate neural networks interact to support complex cognitive processes such as remembrance of the personal past? Autobiographical memory (AM) retrieval recruits a consistent pattern of activation that potentially comprises multiple neural networks. However, it is unclear how such large-scale neural networks interact and are modulated by properties of the memory retrieval process. In the present functional MRI (fMRI) study, we combined independent component analysis (ICA) and dynamic causal modeling (DCM) to understand the neural networks supporting AM retrieval. ICA revealed four task-related components consistent with the previous literature: 1) medial prefrontal cortex (PFC) network, associated with self-referential processes, 2) medial temporal lobe (MTL) network, associated with memory, 3) frontoparietal network, associated with strategic search, and 4) cingulooperculum network, associated with goal maintenance. DCM analysis revealed that the medial PFC network drove activation within the system, consistent with the importance of this network to AM retrieval. Additionally, memory accessibility and recollection uniquely altered connectivity between these neural networks. Recollection modulated the influence of the medial PFC on the MTL network during elaboration, suggesting that greater connectivity among subsystems of the default network supports greater re-experience. In contrast, memory accessibility modulated the influence of frontoparietal and MTL networks on the medial PFC network, suggesting that ease of retrieval involves greater fluency among the multiple networks contributing to AM. These results show the integration between neural networks supporting AM retrieval and the modulation of network connectivity by behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Post-traumatic stress disorder (PTSD) affects regions that support autobiographical memory (AM) retrieval, such as the hippocampus, amygdala and ventral medial prefrontal cortex (PFC). However, it is not well understood how PTSD may impact the neural mechanisms of memory retrieval for the personal past. We used a generic cue method combined with parametric modulation analysis and functional MRI (fMRI) to investigate the neural mechanisms affected by PTSD symptoms during the retrieval of a large sample of emotionally intense AMs. There were three main results. First, the PTSD group showed greater recruitment of the amygdala/hippocampus during the construction of negative versus positive emotionally intense AMs, when compared to controls. Second, across both the construction and elaboration phases of retrieval the PTSD group showed greater recruitment of the ventral medial PFC for negatively intense memories, but less recruitment for positively intense memories. Third, the PTSD group showed greater functional coupling between the ventral medial PFC and the amygdala for negatively intense memories, but less coupling for positively intense memories. In sum, the fMRI data suggest that there was greater recruitment and coupling of emotional brain regions during the retrieval of negatively intense AMs in the PTSD group when compared to controls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the neural systems that contribute to the formation of complex, self-relevant emotional memories, dedicated fans of rival college basketball teams watched a competitive game while undergoing functional magnetic resonance imaging (fMRI). During a subsequent recognition memory task, participants were shown video clips depicting plays of the game, stemming either from previously-viewed game segments (targets) or from non-viewed portions of the same game (foils). After an old-new judgment, participants provided emotional valence and intensity ratings of the clips. A data driven approach was first used to decompose the fMRI signal acquired during free viewing of the game into spatially independent components. Correlations were then calculated between the identified components and post-scanning emotion ratings for successfully encoded targets. Two components were correlated with intensity ratings, including temporal lobe regions implicated in memory and emotional functions, such as the hippocampus and amygdala, as well as a midline fronto-cingulo-parietal network implicated in social cognition and self-relevant processing. These data were supported by a general linear model analysis, which revealed additional valence effects in fronto-striatal-insular regions when plays were divided into positive and negative events according to the fan's perspective. Overall, these findings contribute to our understanding of how emotional factors impact distributed neural systems to successfully encode dynamic, personally-relevant event sequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We sought to map the time course of autobiographical memory retrieval, including brain regions that mediate phenomenological experiences of reliving and emotional intensity. Participants recalled personal memories to auditory word cues during event-related functional magnetic resonance imaging (fMRI). Participants pressed a button when a memory was accessed, maintained and elaborated the memory, and then gave subjective ratings of emotion and reliving. A novel fMRI approach based on timing differences capitalized on the protracted reconstructive process of autobiographical memory to segregate brain areas contributing to initial access and later elaboration and maintenance of episodic memories. The initial period engaged hippocampal, retrosplenial, and medial and right prefrontal activity, whereas the later period recruited visual, precuneus, and left prefrontal activity. Emotional intensity ratings were correlated with activity in several regions, including the amygdala and the hippocampus during the initial period. Reliving ratings were correlated with activity in visual cortex and ventromedial and inferior prefrontal regions during the later period. Frontopolar cortex was the only brain region sensitive to emotional intensity across both periods. Results were confirmed by time-locked averages of the fMRI signal. The findings indicate dynamic recruitment of emotion-, memory-, and sensory-related brain regions during remembering and their dissociable contributions to phenomenological features of the memories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: The authors sought to increase understanding of the brain mechanisms involved in cigarette addiction by identifying neural substrates modulated by visual smoking cues in nicotine-deprived smokers. METHOD: Event-related functional magnetic resonance imaging (fMRI) was used to detect brain activation after exposure to smoking-related images in a group of nicotine-deprived smokers and a nonsmoking comparison group. Subjects viewed a pseudo-random sequence of smoking images, neutral nonsmoking images, and rare targets (photographs of animals). Subjects pressed a button whenever a rare target appeared. RESULTS: In smokers, the fMRI signal was greater after exposure to smoking-related images than after exposure to neutral images in mesolimbic dopamine reward circuits known to be activated by addictive drugs (right posterior amygdala, posterior hippocampus, ventral tegmental area, and medial thalamus) as well as in areas related to visuospatial attention (bilateral prefrontal and parietal cortex and right fusiform gyrus). In nonsmokers, no significant differences in fMRI signal following exposure to smoking-related and neutral images were detected. In most regions studied, both subject groups showed greater activation following presentation of rare target images than after exposure to neutral images. CONCLUSIONS: In nicotine-deprived smokers, both reward and attention circuits were activated by exposure to smoking-related images. Smoking cues are processed like rare targets in that they activate attentional regions. These cues are also processed like addictive drugs in that they activate mesolimbic reward regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The naming impairments in Alzheimer's disease (AD) have been attributed to a variety of cognitive processing deficits, including impairments in semantic memory, visual perception, and lexical access. To further understand the underlying biological basis of the naming failures in AD, the present investigation examined the relationship of various classes of naming errors to regional brain measures of cerebral glucose metabolism as measured with 18 F-Fluoro-2-deoxyglucose (FDG) and positron emission tomography (PET). Errors committed on a visual naming test were categorized according to a cognitive processing schema and then examined in relationship to metabolism within specific brain regions. The results revealed an association of semantic errors with glucose metabolism in the frontal and temporal regions. Language access errors, such as circumlocutions, and word blocking nonresponses were associated with decreased metabolism in areas within the left hemisphere. Visuoperceptive errors were related to right inferior parietal metabolic function. The findings suggest that specific brain areas mediate the perceptual, semantic, and lexical processing demands of visual naming and that visual naming problems in dementia are related to dysfunction in specific neural circuits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reliable neuroimaging finding that older adults often show greater activity (over-recruitment) than younger adults is typically attributed to compensation. Yet, the neural mechanisms of over-recruitment in older adults (OAs) are largely unknown. Rodent electrophysiology studies have shown that as number of afferent fibers within a circuit decreases with age, the fibers that remain show higher synaptic field potentials (less wiring, more firing). Extrapolating to system-level measures in humans, we proposed and tested the hypothesis that greater activity in OAs compensates for impaired white-matter connectivity. Using a neuropsychological test battery, we measured individual differences in executive functions associated with the prefrontal cortex (PFC) and memory functions associated with the medial temporal lobes (MTLs). Using event-related functional magnetic resonance imaging, we compared activity for successful versus unsuccessful trials during a source memory task. Finally, we measured white-matter integrity using diffusion tensor imaging. The study yielded 3 main findings. First, low-executive OAs showed greater success-related activity in the PFC, whereas low-memory OAs showed greater success-related activity in the MTLs. Second, low-executive OAs displayed white-matter deficits in the PFC, whereas low-memory OAs displayed white-matter deficits in the MTLs. Finally, in both prefrontal and MTL regions, white-matter decline and success-related activations occurred in close proximity and were negatively correlated. This finding supports the less-wiring-more-firing hypothesis, which provides a testable account of compensatory over-recruitment in OAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although it is known that brain regions in one hemisphere may interact very closely with their corresponding contralateral regions (collaboration) or operate relatively independent of them (segregation), the specific brain regions (where) and conditions (how) associated with collaboration or segregation are largely unknown. We investigated these issues using a split field-matching task in which participants matched the meaning of words or the visual features of faces presented to the same (unilateral) or to different (bilateral) visual fields. Matching difficulty was manipulated by varying the semantic similarity of words or the visual similarity of faces. We assessed the white matter using the fractional anisotropy (FA) measure provided by diffusion tensor imaging (DTI) and cross-hemispheric communication in terms of fMRI-based connectivity between homotopic pairs of cortical regions. For both perceptual and semantic matching, bilateral trials became faster than unilateral trials as difficulty increased (bilateral processing advantage, BPA). The study yielded three novel findings. First, whereas FA in anterior corpus callosum (genu) correlated with word-matching BPA, FA in posterior corpus callosum (splenium-occipital) correlated with face-matching BPA. Second, as matching difficulty intensified, cross-hemispheric functional connectivity (CFC) increased in domain-general frontopolar cortex (for both word and face matching) but decreased in domain-specific ventral temporal lobe regions (temporal pole for word matching and fusiform gyrus for face matching). Last, a mediation analysis linking DTI and fMRI data showed that CFC mediated the effect of callosal FA on BPA. These findings clarify the mechanisms by which the hemispheres interact to perform complex cognitive tasks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Mechanical and in particular tactile allodynia is a hallmark of chronic pain in which innocuous touch becomes painful. Previous cholera toxin B (CTB)-based neural tracing experiments and electrophysiology studies had suggested that aberrant axon sprouting from touch sensory afferents into pain-processing laminae after injury is a possible anatomical substrate underlying mechanical allodynia. This hypothesis was later challenged by experiments using intra-axonal labeling of A-fiber neurons, as well as single-neuron labeling of electrophysiologically identified sensory neurons. However, no studies have used genetically labeled neurons to examine this issue, and most studies were performed on spinal but not trigeminal sensory neurons which are the relevant neurons for orofacial pain, where allodynia oftentimes plays a dominant clinical role. FINDINGS: We recently discovered that parvalbumin::Cre (Pv::Cre) labels two types of Aβ touch neurons in trigeminal ganglion. Using a Pv::CreER driver and a Cre-dependent reporter mouse, we specifically labeled these Aβ trigeminal touch afferents by timed taxomifen injection prior to inflammation or infraorbital nerve injury (ION transection). We then examined the peripheral and central projections of labeled axons into the brainstem caudalis nucleus after injuries vs controls. We found no evidence for ectopic sprouting of Pv::CreER labeled trigeminal Aβ axons into the superficial trigeminal noci-receptive laminae. Furthermore, there was also no evidence for peripheral sprouting. CONCLUSIONS: CreER-based labeling prior to injury precluded the issue of phenotypic changes of neurons after injury. Our results suggest that touch allodynia in chronic orofacial pain is unlikely caused by ectopic sprouting of Aβ trigeminal afferents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

UNLABELLED: Response inhibition is a key component of executive control, but its relation to other cognitive processes is not well understood. We recently documented the "inhibition-induced forgetting effect": no-go cues are remembered more poorly than go cues. We attributed this effect to central-resource competition, whereby response inhibition saps attention away from memory encoding. However, this proposal is difficult to test with behavioral means alone. We therefore used fMRI in humans to test two neural predictions of the "common resource hypothesis": (1) brain regions associated with response inhibition should exhibit greater resource demands during encoding of subsequently forgotten than remembered no-go cues; and (2) this higher inhibitory resource demand should lead to memory encoding regions having less resources available during encoding of subsequently forgotten no-go cues. Participants categorized face stimuli by gender in a go/no-go task and, following a delay, performed a surprise recognition memory test for those faces. Replicating previous findings, memory was worse for no-go than for go stimuli. Crucially, forgetting of no-go cues was predicted by high inhibitory resource demand, as quantified by the trial-by-trial ratio of activity in neural "no-go" versus "go" networks. Moreover, this index of inhibitory demand exhibited an inverse trial-by-trial relationship with activity in brain regions responsible for the encoding of no-go cues into memory, notably the ventrolateral prefrontal cortex. This seesaw pattern between the neural resource demand of response inhibition and activity related to memory encoding directly supports the hypothesis that response inhibition temporarily saps attentional resources away from stimulus processing. SIGNIFICANCE STATEMENT: Recent behavioral experiments showed that inhibiting a motor response to a stimulus (a "no-go cue") impairs subsequent memory for that cue. Here, we used fMRI to test whether this "inhibition-induced forgetting effect" is caused by competition for neural resources between the processes of response inhibition and memory encoding. We found that trial-by-trial variations in neural inhibitory resource demand predicted subsequent forgetting of no-go cues and that higher inhibitory demand was furthermore associated with lower concurrent activation in brain regions responsible for successful memory encoding of no-go cues. Thus, motor inhibition and stimulus encoding appear to compete with each other: when more resources have to be devoted to inhibiting action, less are available for encoding sensory stimuli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All of us are taxed with juggling our inner mental lives with immediate external task demands. For many years, the temporary maintenance of internal information was considered to be handled by a dedicated working memory (WM) system. It has recently become increasingly clear, however, that such short-term internal activation interacts with attention focused on external stimuli. It is unclear, however, exactly why these two interact, at what level of processing, and to what degree. Because our internal maintenance and external attention processes co-occur with one another, the manner of their interaction has vast implications for functioning in daily life. The work described here has employed original experimental paradigms combining WM and attention task elements, functional magnetic resonance imaging (fMRI) to illuminate the associated neural processes, and transcranial magnetic stimulation (TMS) to clarify the causal substrates of attentional brain function. These studies have examined a mechanism that might explain why (and when) the content of WM can involuntarily capture visual attention. They have, furthermore, tested whether fundamental attentional selection processes operate within WM, and whether they are reciprocal with attention. Finally, they have illuminated the neural consequences of competing attentional demands. The findings indicate that WM shares representations, operating principles, and cognitive resources with externally-oriented attention.