18 resultados para MASS INDEX
Resumo:
BACKGROUND: This study examined whether objective measures of food, physical activity and built environment exposures, in home and non-home settings, contribute to children's body weight. Further, comparing GPS and GIS measures of environmental exposures along routes to and from school, we tested for evidence of selective daily mobility bias when using GPS data. METHODS: This study is a cross-sectional analysis, using objective assessments of body weight in relation to multiple environmental exposures. Data presented are from a sample of 94 school-aged children, aged 5-11 years. Children's heights and weights were measured by trained researchers, and used to calculate BMI z-scores. Participants wore a GPS device for one full week. Environmental exposures were estimated within home and school neighbourhoods, and along GIS (modelled) and GPS (actual) routes from home to school. We directly compared associations between BMI and GIS-modelled versus GPS-derived environmental exposures. The study was conducted in Mebane and Mount Airy, North Carolina, USA, in 2011. RESULTS: In adjusted regression models, greater school walkability was associated with significantly lower mean BMI. Greater home walkability was associated with increased BMI, as was greater school access to green space. Adjusted associations between BMI and route exposure characteristics were null. The use of GPS-actual route exposures did not appear to confound associations between environmental exposures and BMI in this sample. CONCLUSIONS: This study found few associations between environmental exposures in home, school and commuting domains and body weight in children. However, walkability of the school neighbourhood may be important. Of the other significant associations observed, some were in unexpected directions. Importantly, we found no evidence of selective daily mobility bias in this sample, although our study design is in need of replication in a free-living adult sample.
Resumo:
This research validates a computerized dietary selection task (Food-Linked Virtual Response or FLVR) for use in studies of food consumption. In two studies, FLVR task responses were compared with measures of health consciousness, mood, body mass index, personality, cognitive restraint toward food, and actual food selections from a buffet table. The FLVR task was associated with variables which typically predict healthy decision-making and was unrelated to mood or body mass index. Furthermore, the FLVR task predicted participants' unhealthy selections from the buffet, but not overall amount of food. The FLVR task is an inexpensive, valid, and easily administered option for assessing momentary dietary decisions.
Resumo:
BACKGROUND: RA and CVD both have inflammation as part of the underlying biology. Our objective was to explore the relationships of GlycA, a measure of glycosylated acute phase proteins, with inflammation and cardiometabolic risk in RA, and explore whether these relationships were similar to those for persons without RA. METHODS: Plasma GlycA was determined for 50 individuals with mild-moderate RA disease activity and 39 controls matched for age, gender, and body mass index (BMI). Regression analyses were performed to assess relationships between GlycA and important markers of traditional inflammation and cardio-metabolic health: inflammatory cytokines, disease activity, measures of adiposity and insulin resistance. RESULTS: On average, RA activity was low (DAS-28 = 3.0 ± 1.4). Traditional inflammatory markers, ESR, hsCRP, IL-1β, IL-6, IL-18 and TNF-α were greater in RA versus controls (P < 0.05 for all). GlycA concentrations were significantly elevated in RA versus controls (P = 0.036). In RA, greater GlycA associated with disease activity (DAS-28; RDAS-28 = 0.5) and inflammation (RESR = 0.7, RhsCRP = 0.7, RIL-6 = 0.3: P < 0.05 for all); in BMI-matched controls, these inflammatory associations were absent or weaker (hsCRP), but GlycA was related to IL-18 (RhsCRP = 0.3, RIL-18 = 0.4: P < 0.05). In RA, greater GlycA associated with more total abdominal adiposity and less muscle density (Rabdominal-adiposity = 0.3, Rmuscle-density = -0.3, P < 0.05 for both). In BMI-matched controls, GlycA associated with more cardio-metabolic markers: BMI, waist circumference, adiposity measures and insulin resistance (R = 0.3-0.6, P < 0.05 for all). CONCLUSIONS: GlycA provides an integrated measure of inflammation with contributions from traditional inflammatory markers and cardio-metabolic sources, dominated by inflammatory markers in persons with RA and cardio-metabolic factors in those without.