24 resultados para Kidneys Cancer Genetic aspects


Relevância:

30.00% 30.00%

Publicador:

Resumo:

CD133 is one of the most common stem cell markers, and functional single nucleotide polymorphisms (SNPs) of CD133 may modulate its gene functions and thus cancer risk and patient survival. We hypothesized that potentially functional CD133 SNPs are associated with gastric cancer (GC) risk and survival. To test this hypothesis, we conducted a case-control study of 371 GC patients and 313 cancer-free controls frequency-matched by age, sex, and ethnicity. We genotyped four selected, potentially functional CD133 SNPs (rs2240688A>C, rs7686732C>G, rs10022537T>A, and rs3130C>T) and used logistic regression analysis for associations of these SNPs with GC risk and Cox hazards regression analysis for survival. We found that compared with the miRNA binding site rs2240688 AA genotype, AC + CC genotypes were associated with significantly increased GC risk (adjusted OR = 1.52, 95% CI = 1.09-2.13); for another miRNA binding site rs3130C>T SNP, the TT genotype was associated with significantly reduced GC risk (adjusted OR = 0.68, 95% CI = 0.48-0.97), compared with CC + CT genotypes. In all patients, the risk rs3130 TT variant genotype was significantly associated with overall survival (OS) (adjusted P(trend) = 0.016 and 0.007 under additive and recessive models, respectively). These findings suggest that these two CD133 miRNA binding site variants, rs2240688 and rs3130, may be potential biomarkers for genetic susceptibility to GC and possible predictors for survival in GC patients but require further validation by larger studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genome-wide association studies (GWASs) have characterized 13 loci associated with melanoma, which only account for a small part of melanoma risk. To identify new genes with too small an effect to be detected individually but which collectively influence melanoma risk and/or show interactive effects, we used a two-step analysis strategy including pathway analysis of genome-wide SNP data, in a first step, and epistasis analysis within significant pathways, in a second step. Pathway analysis, using the gene-set enrichment analysis (GSEA) approach and the gene ontology (GO) database, was applied to the outcomes of MELARISK (3,976 subjects) and MDACC (2,827 subjects) GWASs. Cross-gene SNP-SNP interaction analysis within melanoma-associated GOs was performed using the INTERSNP software. Five GO categories were significantly enriched in genes associated with melanoma (false discovery rate ≤ 5% in both studies): response to light stimulus, regulation of mitotic cell cycle, induction of programmed cell death, cytokine activity and oxidative phosphorylation. Epistasis analysis, within each of the five significant GOs, showed significant evidence for interaction for one SNP pair at TERF1 and AFAP1L2 loci (pmeta-int  = 2.0 × 10(-7) , which met both the pathway and overall multiple-testing corrected thresholds that are equal to 9.8 × 10(-7) and 2.0 × 10(-7) , respectively) and suggestive evidence for another pair involving correlated SNPs at the same loci (pmeta-int  = 3.6 × 10(-6) ). This interaction has important biological relevance given the key role of TERF1 in telomere biology and the reported physical interaction between TERF1 and AFAP1L2 proteins. This finding brings a novel piece of evidence for the emerging role of telomere dysfunction into melanoma development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The kinesin-like factor 1 B (KIF1B) gene plays an important role in the process of apoptosis and the transformation and progression of malignant cells. Genetic variations in KIF1B may contribute to risk of epithelial ovarian cancer (EOC). In this study of 1,324 EOC patients and 1,386 cancer-free female controls, we investigated associations between two potentially functional single nucleotide polymorphisms in KIF1B and EOC risk by the conditional logistic regression analysis. General linear regression model was used to evaluate the correlation between the number of variant alleles and KIF1B mRNA expression levels. We found that the rs17401966 variant AG/GG genotypes were significantly associated with a decreased risk of EOC (adjusted odds ratio (OR) = 0.81, 95 % confidence interval (CI) = 0.68-0.97), compared with the AA genotype, but no associations were observed for rs1002076. Women who carried both rs17401966 AG/GG and rs1002076 AG/AA genotypes of KIF1B had a 0.82-fold decreased risk (adjusted 95 % CI = 0.69-0.97), compared with others. Additionally, there was no evidence of possible interactions between about-mentioned co-variants. Further genotype-phenotype correlation analysis indicated that the number of rs17401966 variant G allele was significantly associated with KIF1B mRNA expression levels (P for GLM = 0.003 and 0.001 in all and Chinese subjects, respectively), with GG carriers having the lowest level of KIF1B mRNA expression. Taken together, the rs17401966 polymorphism likely regulates KIF1B mRNA expression and thus may be associated with EOC risk in Eastern Chinese women. Larger, independent studies are warranted to validate our findings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single nucleotide polymorphisms (SNPs) in the promoter region of FAS and FASLG may alter their transcriptional activity. Thus, we determined the associations between four FAS and FASLG promoter variants (FAS1377G>A, rs2234767; 670A>G, rs1800682; FASLG844T>C, rs763110 and 124A>G, rs5030772) and the risk of recurrence of squamous cell carcinoma of the oropharynx (SCCOP). We evaluated the associations between FAS and FASLG genetic variants and the risk of recurrence in a cohort of 1,008 patients. The log-rank test and multivariate Cox models were used to evaluate the associations. Compared with patients with common homozygous genotypes of FAS670 and FASLG844 polymorphisms, patients with variant genotypes had lower disease-free survival rates (log-rank p < 0.0001 and p < 0.0001, respectively) and an approximately threefold higher risk of SCCOP recurrence (HR, 3.2;95% CI, 2.2-4.6; and HR, 3.1; 95% CI, 2.2-4.4, respectively) after multivariate adjustment. Furthermore, among patients with HPV16-positive tumors, those with variant genotypes of these two polymorphisms had lower disease-free survival rates (log-rank, p < 0.0001 and p < 0.0001, respectively) and a higher recurrence risk than did patients with common homozygous genotypes (HR, 12.9; 95% CI, 3.8-43.6; and HR, 8.1; 95% CI, 3.6-18.6, respectively), whereas no significant associations were found for FAS1377 and FASLG124 polymorphisms. Our findings suggest that FAS670 and FASLG844 polymorphisms modulate the risk of recurrence of SCCOP, particularly in patients with HPV16-positive tumors. Larger studies are needed to validate these results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Platinum agents can cause the formation of DNA adducts and induce apoptosis to eliminate tumor cells. The aim of the present study was to investigate the influence of genetic variants of MDM2 on chemotherapy-related toxicities and clinical outcomes in patients with advanced non-small-cell lung cancer (NSCLC). MATERIALS AND METHODS: We recruited 663 patients with advanced NSCLC who had been treated with first-line platinum-based chemotherapy. Five tagging single nucleotide polymorphisms (SNPs) in MDM2 were genotyped in these patients. The associations of these SNPs with clinical toxicities and outcomes were evaluated using logistic regression and Cox regression analyses. RESULTS: Two SNPs (rs1470383 and rs1690924) showed significant associations with chemotherapy-related toxicities (ie, overall, hematologic, and gastrointestinal toxicity). Compared with the wild genotype AA carriers, patients with the GG genotype of rs1470383 had an increased risk of overall toxicity (odds ratio [OR], 3.28; 95% confidence interval [CI], 1.34-8.02; P = .009) and hematologic toxicity (OR, 4.10; 95% CI, 1.73-9.71; P = .001). Likewise, patients with the AG genotype of rs1690924 showed more sensitivity to gastrointestinal toxicity than did those with the wild-type homozygote GG (OR, 2.32; 95% CI, 1.30-4.14; P = .004). Stratified survival analysis revealed significant associations between rs1470383 genotypes and overall survival in patients without overall or hematologic toxicity (P = .007 and P = .0009, respectively). CONCLUSION: The results of our study suggest that SNPs in MDM2 might be used to predict the toxicities of platinum-based chemotherapy and overall survival in patients with advanced NSCLC. Additional validations of the association are warranted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A human endogenous retrovirus type E (HERV-E) was recently found to be selectively expressed in most renal cell carcinomas (RCCs). Importantly, antigens derived from this provirus are immunogenic, stimulating cytotoxic T cells that kill RCC cells in vitro and in vivo. Here, we show HERV-E expression is restricted to the clear cell subtype of RCC (ccRCC) characterized by an inactivation of the von Hippel-Lindau (VHL) tumor-suppressor gene with subsequent stabilization of hypoxia-inducible transcription factors (HIFs)-1α and -2α. HERV-E expression in ccRCC linearly correlated with HIF-2α levels and could be silenced in tumor cells by either transfection of normal VHL or small interfering RNA inhibition of HIF-2α. Using chromatin immunoprecipitation, we demonstrated that HIF-2α can serve as transcriptional factor for HERV-E by binding with HIF response element (HRE) localized in the proviral 5' long terminal repeat (LTR). Remarkably, the LTR was found to be hypomethylated only in HERV-E-expressing ccRCC while other tumors and normal tissues possessed a hypermethylated LTR preventing proviral expression. Taken altogether, these findings provide the first evidence that inactivation of a tumor suppressor gene can result in aberrant proviral expression in a human tumor and give insights needed for translational research aimed at boosting human immunity against antigenic components of this HERV-E.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inflammatory breast cancer (IBC) is an extremely rare but highly aggressive form of breast cancer characterized by the rapid development of therapeutic resistance leading to particularly poor survival. Our previous work focused on the elucidation of factors that mediate therapeutic resistance in IBC and identified increased expression of the anti-apoptotic protein, X-linked inhibitor of apoptosis protein (XIAP), to correlate with the development of resistance to chemotherapeutics. Although XIAP is classically thought of as an inhibitor of caspase activation, multiple studies have revealed that XIAP can also function as a signaling intermediate in numerous pathways. Based on preliminary evidence revealing high expression of XIAP in pre-treatment IBC cells rather than only subsequent to the development of resistance, we hypothesized that XIAP could play an important signaling role in IBC pathobiology outside of its heavily published apoptotic inhibition function. Further, based on our discovery of inhibition of chemotherapeutic efficacy, we postulated that XIAP overexpression might also play a role in resistance to other forms of therapy, such as immunotherapy. Finally, we posited that targeting of specific redox adaptive mechanisms, which are observed to be a significant barrier to successful treatment of IBC, could overcome therapeutic resistance and enhance the efficacy of chemo-, radio-, and immuno- therapies. To address these hypotheses our objectives were: 1. to determine a role for XIAP in IBC pathobiology and to elucidate the upstream regulators and downstream effectors of XIAP; 2. to evaluate and describe a role for XIAP in the inhibition of immunotherapy; and 3. to develop and characterize novel redox modulatory strategies that target identified mechanisms to prevent or reverse therapeutic resistance.

Using various genomic and proteomic approaches, combined with analysis of cellular viability, proliferation, and growth parameters both in vitro and in vivo, we demonstrate that XIAP plays a central role in both IBC pathobiology in a manner mostly independent of its role as a caspase-binding protein. Modulation of XIAP expression in cells derived from patients prior to any therapeutic intervention significantly altered key aspects IBC biology including, but not limited to: IBC-specific gene signatures; the tumorigenic capacity of tumor cells; and the metastatic phenotype of IBC, all of which are revealed to functionally hinge on XIAP-mediated NFκB activation, a robust molecular determinant of IBC. Identification of the mechanism of XIAP-mediated NFκB activation led to the characterization of novel peptide-based antagonist which was further used to identify that increased NFκB activation was responsible for redox adaptation previously observed in therapy-resistant IBC cells. Lastly, we describe the targeting of this XIAP-NFκB-ROS axis using a novel redox modulatory strategy both in vitro and in vivo. Together, the data presented here characterize a novel and crucial role for XIAP both in therapeutic resistance and the pathobiology of IBC; these results confirm our previous work in acquired therapeutic resistance and establish the feasibility of targeting XIAP-NFκB and the redox adaptive phenotype of IBC as a means to enhance survival of patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ABL family of non-receptor tyrosine kinases, ABL1 (also known as c-ABL) and ABL2 (also known as Arg), links diverse extracellular stimuli to signaling pathways that control cell growth, survival, adhesion, migration and invasion. ABL tyrosine kinases play an oncogenic role in human leukemias. However, the role of ABL kinases in solid tumors including breast cancer progression and metastasis is just emerging.

To evaluate whether ABL family kinases are involved in breast cancer development and metastasis, we first analyzed genomic data from large-scale screen of breast cancer patients. We found that ABL kinases are up-regulated in invasive breast cancer patients and high expression of ABL kinases correlates with poor prognosis and early metastasis. Using xenograft mouse models combined with genetic and pharmacological approaches, we demonstrated that ABL kinases are required for regulating breast cancer progression and metastasis to the bone. Using next generation sequencing and bioinformatics analysis, we uncovered a critical role for ABL kinases in promoting multiple oncogenic pathways including TAZ and STAT5 signaling networks and the epithelial to mesenchymal transition (EMT). These findings revealed a role for ABL kinases in regulating breast cancer tumorigenesis and bone metastasis and provide a rationale for targeting breast tumors with ABL-specific inhibitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The advent of next-generation sequencing, now nearing a decade in age, has enabled, among other capabilities, measurement of genome-wide sequence features at unprecedented scale and resolution.

In this dissertation, I describe work to understand the genetic underpinnings of non-Hodgkin’s lymphoma through exploration of the epigenetics of its cell of origin, initial characterization and interpretation of driver mutations, and finally, a larger-scale, population-level study that incorporates mutation interpretation with clinical outcome.

In the first research chapter, I describe genomic characteristics of lymphomas through the lens of their cells of origin. Just as many other cancers, such as breast cancer or lung cancer, are categorized based on their cell of origin, lymphoma subtypes can be examined through the context of their normal B Cells of origin, Naïve, Germinal Center, and post-Germinal Center. By applying integrative analysis of the epigenetics of normal B Cells of origin through chromatin-immunoprecipitation sequencing, we find that differences in normal B Cell subtypes are reflected in the mutational landscapes of the cancers that arise from them, namely Mantle Cell, Burkitt, and Diffuse Large B-Cell Lymphoma.

In the next research chapter, I describe our first endeavor into understanding the genetic heterogeneity of Diffuse Large B Cell Lymphoma, the most common form of non-Hodgkin’s lymphoma, which affects 100,000 patients in the world. Through whole-genome sequencing of 1 case as well as whole-exome sequencing of 94 cases, we characterize the most recurrent genetic features of DLBCL and lay the groundwork for a larger study.

In the last research chapter, I describe work to characterize and interpret the whole exomes of 1001 cases of DLBCL in the largest single-cancer study to date. This highly-powered study enabled sub-gene, gene-level, and gene-network level understanding of driver mutations within DLBCL. Moreover, matched genomic and clinical data enabled the connection of these driver mutations to clinical features such as treatment response or overall survival. As sequencing costs continue to drop, whole-exome sequencing will become a routine clinical assay, and another diagnostic dimension in addition to existing methods such as histology. However, to unlock the full utility of sequencing data, we must be able to interpret it. This study undertakes a first step in developing the understanding necessary to uncover the genomic signals of DLBCL hidden within its exomes. However, beyond the scope of this one disease, the experimental and analytical methods can be readily applied to other cancer sequencing studies.

Thus, this dissertation leverages next-generation sequencing analysis to understand the genetic underpinnings of lymphoma, both by examining its normal cells of origin as well as through a large-scale study to sensitively identify recurrently mutated genes and their relationship to clinical outcome.