20 resultados para Hierarchical Bayesian
Resumo:
Bagging is a method of obtaining more ro- bust predictions when the model class under consideration is unstable with respect to the data, i.e., small changes in the data can cause the predicted values to change significantly. In this paper, we introduce a Bayesian ver- sion of bagging based on the Bayesian boot- strap. The Bayesian bootstrap resolves a the- oretical problem with ordinary bagging and often results in more efficient estimators. We show how model averaging can be combined within the Bayesian bootstrap and illustrate the procedure with several examples.
Resumo:
This chapter presents a model averaging approach in the M-open setting using sample re-use methods to approximate the predictive distribution of future observations. It first reviews the standard M-closed Bayesian Model Averaging approach and decision-theoretic methods for producing inferences and decisions. It then reviews model selection from the M-complete and M-open perspectives, before formulating a Bayesian solution to model averaging in the M-open perspective. It constructs optimal weights for MOMA:M-open Model Averaging using a decision-theoretic framework, where models are treated as part of the ‘action space’ rather than unknown states of nature. Using ‘incompatible’ retrospective and prospective models for data from a case-control study, the chapter demonstrates that MOMA gives better predictive accuracy than the proxy models. It concludes with open questions and future directions.
Resumo:
We propose a novel unsupervised approach for linking records across arbitrarily many files, while simultaneously detecting duplicate records within files. Our key innovation is to represent the pattern of links between records as a {\em bipartite} graph, in which records are directly linked to latent true individuals, and only indirectly linked to other records. This flexible new representation of the linkage structure naturally allows us to estimate the attributes of the unique observable people in the population, calculate $k$-way posterior probabilities of matches across records, and propagate the uncertainty of record linkage into later analyses. Our linkage structure lends itself to an efficient, linear-time, hybrid Markov chain Monte Carlo algorithm, which overcomes many obstacles encountered by previously proposed methods of record linkage, despite the high dimensional parameter space. We assess our results on real and simulated data.