23 resultados para Graphic of a Function


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Agonist-promoted desensitization of adenylate cyclase is intimately associated with phosphorylation of the beta-adrenergic receptor in mammalian, avian, and amphibian cells. However, the nature of the protein kinase(s) involved in receptor phosphorylation remains largely unknown. We report here the identification and partial purification of a protein kinase capable of phosphorylating the agonist-occupied form of the purified beta-adrenergic receptor. The enzyme is prepared from a supernatant fraction from high-speed centrifugation of lysed kin- cells, a mutant of S49 lymphoma cells that lacks a functional cAMP-dependent protein kinase. The beta-agonist isoproterenol induces a 5- to 10-fold increase in receptor phosphorylation by this kinase, which is blocked by the antagonist alprenolol. Fractionation of the kin- supernatant on molecular-sieve HPLC and DEAE-Sephacel results in a 50- to 100-fold purified beta-adrenergic receptor kinase preparation that is largely devoid of other protein kinase activities. The kinase activity is insensitive to cAMP, cGMP, cAMP-dependent kinase inhibitor, Ca2+-calmodulin, Ca2+-phospholipid, and phorbol esters and does not phosphorylate general kinase substrates such as casein and histones. Phosphate appears to be incorporated solely into serine residues. The existence of this novel cAMP-independent kinase, which preferentially phosphorylates the agonist-occupied form of the beta-adrenergic receptor, suggests a mechanism that may explain the homologous or agonist-specific form of adenylate cyclase desensitization. It also suggests a general mechanism for regulation of receptor function in which only the agonist-occupied or "active" form of the receptor is a substrate for enzymes inducing covalent modification.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Proapoptotic Bcl-2 family members, such as Bax, promote release of cytochrome c from mitochondria, leading to caspase activation and cell death. It was previously reported that modulator of apoptosis protein 1 (MOAP-1), an enhancer of Bax activation induced by DNA damage, is stabilized by Trim39, a protein of unknown function. In this paper, we show that MOAP-1 is a novel substrate of the anaphase-promoting complex (APC/C(Cdh1)) ubiquitin ligase. The influence of Trim39 on MOAP-1 levels stems from the ability of Trim39 (a RING domain E3 ligase) to directly inhibit APC/C(Cdh1)-mediated protein ubiquitylation. Accordingly, small interfering ribonucleic acid-mediated knockdown of Cdh1 stabilized MOAP-1, thereby enhancing etoposide-induced Bax activation and apoptosis. These data identify Trim39 as a novel APC/C regulator and provide an unexpected link between the APC/C and apoptotic regulation via MOAP-1.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tripartite motif 39 (Trim39) is a RING domain-containing E3 ubiquitin ligase able to inhibit the anaphase-promoting complex (APC/C) directly. Through analysis of Trim39 function in p53-positive and p53-negative cells, we have found, surprisingly, that p53-positive cells lacking Trim39 could not traverse the G1/S transition. This effect did not result from disinhibition of the APC/C. Moreover, although Trim39 loss inhibited etoposide-induced apoptosis in p53-negative cells, apoptosis was enhanced by Trim39 knockdown in p53-positive cells. Furthermore, we show here that the Trim39 can directly bind and ubiquitylate p53 in vitro and in vivo, leading to p53 degradation. Depletion of Trim39 significantly increased p53 protein levels and cell growth retardation in multiple cell lines. We found that the relative importance of Trim39 and the well-characterized p53-directed E3 ligase, murine double minute 2 (MDM2), varied between cell types. In cells that were relatively insensitive to the MDM2 inhibitor, nutlin-3a, apoptosis could be markedly enhanced by siRNA directed against Trim39. As such, Trim39 may serve as a potential therapeutic target in tumors with WT p53 when MDM2 inhibition is insufficient to elevate p53 levels and apoptosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Existing in vitro models of human skeletal muscle cannot recapitulate the organization and function of native muscle, limiting their use in physiological and pharmacological studies. Here, we demonstrate engineering of electrically and chemically responsive, contractile human muscle tissues ('myobundles') using primary myogenic cells. These biomimetic constructs exhibit aligned architecture, multinucleated and striated myofibers, and a Pax7(+) cell pool. They contract spontaneously and respond to electrical stimuli with twitch and tetanic contractions. Positive correlation between contractile force and GCaMP6-reported calcium responses enables non-invasive tracking of myobundle function and drug response. During culture, myobundles maintain functional acetylcholine receptors and structurally and functionally mature, evidenced by increased myofiber diameter and improved calcium handling and contractile strength. In response to diversely acting drugs, myobundles undergo dose-dependent hypertrophy or toxic myopathy similar to clinical outcomes. Human myobundles provide an enabling platform for predictive drug and toxicology screening and development of novel therapeutics for muscle-related disorders.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The short arms of the ten acrocentric human chromosomes share several repetitive DNAs, including ribosomal RNA genes (rDNA). The rDNA arrays correspond to nucleolar organizing regions that coalesce each cell cycle to form the nucleolus. Telomere disruption by expressing a mutant version of telomere binding protein TRF2 (dnTRF2) causes non-random acrocentric fusions, as well as large-scale nucleolar defects. The mechanisms responsible for acrocentric chromosome sensitivity to dysfunctional telomeres are unclear. In this study, we show that TRF2 normally associates with the nucleolus and rDNA. However, when telomeres are crippled by dnTRF2 or RNAi knockdown of TRF2, gross nucleolar and chromosomal changes occur. We used the controllable dnTRF2 system to precisely dissect the timing and progression of nucleolar and chromosomal instability induced by telomere dysfunction, demonstrating that nucleolar changes precede the DNA damage and morphological changes that occur at acrocentric short arms. The rDNA repeat arrays on the short arms decondense, and are coated by RNA polymerase I transcription binding factor UBF, physically linking acrocentrics to one another as they become fusogenic. These results highlight the importance of telomere function in nucleolar stability and structural integrity of acrocentric chromosomes, particularly the rDNA arrays. Telomeric stress is widely accepted to cause DNA damage at chromosome ends, but our findings suggest that it also disrupts chromosome structure beyond the telomere region, specifically within the rDNA arrays located on acrocentric chromosomes. These results have relevance for Robertsonian translocation formation in humans and mechanisms by which acrocentric-acrocentric fusions are promoted by DNA damage and repair.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Experiments that demonstrated a role for the substantia nigra in eye movements have played an important role in our understanding of the function of the basal ganglia in behavior more broadly. In this review we explore more recent experiments that extend the role of the substantia nigra pars reticulata from a simple gate for eye movements to include a role in cognitive processes for eye movements. We review recent evidence suggesting that basal ganglia nuclei beyond the substantia nigra may also play a role in eye movements and the cognitive events leading up to the production of eye movements. We close by pointing out some unresolved questions in our understanding of the relationship of basal ganglia nuclei and eye movements.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Automated reporting of estimated glomerular filtration rate (eGFR) is a recent advance in laboratory information technology (IT) that generates a measure of kidney function with chemistry laboratory results to aid early detection of chronic kidney disease (CKD). Because accurate diagnosis of CKD is critical to optimal medical decision-making, several clinical practice guidelines have recommended the use of automated eGFR reporting. Since its introduction, automated eGFR reporting has not been uniformly implemented by U. S. laboratories despite the growing prevalence of CKD. CKD is highly prevalent within the Veterans Health Administration (VHA), and implementation of automated eGFR reporting within this integrated healthcare system has the potential to improve care. In July 2004, the VHA adopted automated eGFR reporting through a system-wide mandate for software implementation by individual VHA laboratories. This study examines the timing of software implementation by individual VHA laboratories and factors associated with implementation. METHODS: We performed a retrospective observational study of laboratories in VHA facilities from July 2004 to September 2009. Using laboratory data, we identified the status of implementation of automated eGFR reporting for each facility and the time to actual implementation from the date the VHA adopted its policy for automated eGFR reporting. Using survey and administrative data, we assessed facility organizational characteristics associated with implementation of automated eGFR reporting via bivariate analyses. RESULTS: Of 104 VHA laboratories, 88% implemented automated eGFR reporting in existing laboratory IT systems by the end of the study period. Time to initial implementation ranged from 0.2 to 4.0 years with a median of 1.8 years. All VHA facilities with on-site dialysis units implemented the eGFR software (52%, p<0.001). Other organizational characteristics were not statistically significant. CONCLUSIONS: The VHA did not have uniform implementation of automated eGFR reporting across its facilities. Facility-level organizational characteristics were not associated with implementation, and this suggests that decisions for implementation of this software are not related to facility-level quality improvement measures. Additional studies on implementation of laboratory IT, such as automated eGFR reporting, could identify factors that are related to more timely implementation and lead to better healthcare delivery.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Plant phototropism, the ability to bend toward or away from light, is predominantly controlled by blue-light photoreceptors, the phototropins. Although phototropins have been well-characterized in Arabidopsis thaliana, their evolutionary history is largely unknown. In this study, we complete an in-depth survey of phototropin homologs across land plants and algae using newly available transcriptomic and genomic data. We show that phototropins originated in an ancestor of Viridiplantae (land plants + green algae). Phototropins repeatedly underwent independent duplications in most major land-plant lineages (mosses, lycophytes, ferns, and seed plants), but remained single-copy genes in liverworts and hornworts-an evolutionary pattern shared with another family of photoreceptors, the phytochromes. Following each major duplication event, the phototropins differentiated in parallel, resulting in two specialized, yet partially overlapping, functional forms that primarily mediate either low- or high-light responses. Our detailed phylogeny enables us to not only uncover new phototropin lineages, but also link our understanding of phototropin function in Arabidopsis with what is known in Adiantum and Physcomitrella (the major model organisms outside of flowering plants). We propose that the convergent functional divergences of phototropin paralogs likely contributed to the success of plants through time in adapting to habitats with diverse and heterogeneous light conditions.