20 resultados para bladder epithelium
Resumo:
Urinary tract infections (UTIs) are typically caused by bacteria that colonize different regions of the urinary tract, mainly the bladder and the kidney. Approximately 25% of women that suffer from UTIs experience a recurrent infection within 6 months of the initial bout, making UTIs a serious economic burden resulting in more than 10 million hospital visits and $3.5 billion in healthcare costs in the United States alone. Type-1 fimbriated Uropathogenic E. coli (UPEC) is the major causative agent of UTIs, accounting for almost 90 % of bacterial UTIs. The unique ability of UPEC to bind and invade the superficial bladder epithelium allows the bacteria to persist inside epithelial niches and survive antibiotic treatment. Persistent, intracellular UPEC are retained in the bladder epithelium for long periods, making them a source of recurrent UTIs. Hence, the ability of UPEC to persist in the bladder is a matter of major health and economic concern, making studies exploring the underlying mechanism of UPEC persistence highly relevant.
In my thesis, I will describe how intracellular Uropathogenic E.coli (UPEC) evade host defense mechanisms in the superficial bladder epithelium. I will also describe some of the unique traits of persistent UPEC and explore strategies to induce their clearance from the bladder. I have discovered that the UPEC virulence factor Alpha-hemolysin (HlyA) plays a key role in the survival and persistence of UPEC in the superficial bladder epithelium. In-vitro and in-vivo studies comparing intracellular survival of wild type (WT) and hemolysin deficient UPEC suggested that HlyA is vital for UPEC persistence in the superficial bladder epithelium. Further in-vitro studies revealed that hemolysin helped UPEC persist intracellularly by evading the bacterial expulsion actions of the bladder cells and remarkably, this virulence factor also helped bacteria avoid t degradation in lysosomes.
To elucidate the mechanistic basis for how hemolysin promotes UPEC persistence in the urothelium, we initially focused on how hemolysin facilitates the evasion of UPEC expulsion from bladder cells. We found that upon entry, UPEC were encased in “exocytic vesicles” but as a result of HlyA expression these bacteria escaped these vesicles and entered the cytosol. Consequently, these bacteria were able to avoid expulsion by the cellular export machinery.
Since bacteria found in the cytosol of host cells are typically recognized by the cellular autophagy pathway and transported to the lysosomes where they are degraded, we explored why this was not the case here. We observed that although cytosolic HlyA expressing UPEC were recognized and encased by the autophagy system and transported to lysosomes, the bacteria appeared to avoid degradation in these normally degradative compartments. A closer examination of the bacteria containing lysosomes revealed that they lacked V-ATPase. V-ATPase is a well-known proton pump essential for the acidification of mammalian intracellular degradative compartments, allowing for the proper functioning of degradative proteases. The absence of V-ATPase appeared to be due to hemolysin mediated alteration of the bladder cell F-actin network. From these studies, it is clear that UPEC hemolysin facilitates UPEC persistence in the superficial bladder epithelium by helping bacteria avoid expulsion by the exocytic machinery of the cell and at the same time enabling the bacteria avoid degradation when the bacteria are shuttled into the lysosomes.
Interestingly even though UPEC appear to avoid elimination from the bladder cell their ability to multiple in bladder cells seem limited.. Indeed, our in-vitro and in-vivo experiments reveal that UPEC survive in superficial bladder epithelium for extended periods of time without a significantly change in CFU numbers. Indeed, we observed these bacteria appeared quiescent in nature. This observation was supported by the observation that UPEC genetically unable to enter a quiescence phase exhibited limited ability to persist in bladder cells in vitro and in vivo, in the mouse bladder.
The studies elucidated in this thesis reveal how UPEC toxin, Alpha-hemolysin plays a significant role in promoting UPEC persistence via the modulation of the vesicular compartmentalization of UPEC at two different stages of the infection in the superficial bladder epithelium. These results highlight the importance of UPEC Alpha-hemolysin as an essential determinant of UPEC persistence in the urinary bladder.
Resumo:
Bladder cancer is a unique disease process in that clinically significant hemorrhage can occur simultaneously with equally significant aberrant clotting. With hematuria the key presenting symptom of bladder cancer, hemorrhage is generally thought to be a component of the natural history of the disease, and to commonly occur during its treatment. However, as those who regularly treat bladder cancer know, the need to address a predisposition to clotting is also very much part of the treatment paradigm. Physicians must be cognizant of the biochemical changes that confer a propensity for both significant bleeding and clotting occurring simultaneously in their patients. Both of these entities remain important issues, and further study is needed to find ways to mitigate and balance the associated risks. Here, we performed a review of the literature, focusing on the concomitant issues of bleeding and venous thromboembolism in both the pre- and post-operative periods in patients with bladder cancer. We formulated a general management approach with respect to these two processes, and we provide direction for further investigation.
Resumo:
Inappropriate activation of the renin-angiotensin system (RAS) contributes to many CKDs. However, the role of the RAS in modulating AKI requires elucidation, particularly because stimulating type 1 angiotensin II (AT1) receptors in the kidney or circulating inflammatory cells can have opposing effects on the generation of inflammatory mediators that underpin the pathogenesis of AKI. For example, TNF-α is a fundamental driver of cisplatin nephrotoxicity, and generation of TNF-α is suppressed or enhanced by AT1 receptor signaling in T lymphocytes or the distal nephron, respectively. In this study, cell tracking experiments with CD4-Cre mT/mG reporter mice revealed robust infiltration of T lymphocytes into the kidney after cisplatin injection. Notably, knockout of AT1 receptors on T lymphocytes exacerbated the severity of cisplatin-induced AKI and enhanced the cisplatin-induced increase in TNF-α levels locally within the kidney and in the systemic circulation. In contrast, knockout of AT1 receptors on kidney epithelial cells ameliorated the severity of AKI and suppressed local and systemic TNF-α production induced by cisplatin. Finally, disrupting TNF-α production specifically within the renal tubular epithelium attenuated the AKI and the increase in circulating TNF-α levels induced by cisplatin. These results illustrate discrepant tissue-specific effects of RAS stimulation on cisplatin nephrotoxicity and raise the concern that inflammatory mediators produced by renal parenchymal cells may influence the function of remote organs by altering systemic cytokine levels. Our findings suggest selective inhibition of AT1 receptors within the nephron as a promising intervention for protecting patients from cisplatin-induced nephrotoxicity.
Resumo:
PURPOSE: To demonstrate the feasibility of using a knowledge base of prior treatment plans to generate new prostate intensity modulated radiation therapy (IMRT) plans. Each new case would be matched against others in the knowledge base. Once the best match is identified, that clinically approved plan is used to generate the new plan. METHODS: A database of 100 prostate IMRT treatment plans was assembled into an information-theoretic system. An algorithm based on mutual information was implemented to identify similar patient cases by matching 2D beam's eye view projections of contours. Ten randomly selected query cases were each matched with the most similar case from the database of prior clinically approved plans. Treatment parameters from the matched case were used to develop new treatment plans. A comparison of the differences in the dose-volume histograms between the new and the original treatment plans were analyzed. RESULTS: On average, the new knowledge-based plan is capable of achieving very comparable planning target volume coverage as the original plan, to within 2% as evaluated for D98, D95, and D1. Similarly, the dose to the rectum and dose to the bladder are also comparable to the original plan. For the rectum, the mean and standard deviation of the dose percentage differences for D20, D30, and D50 are 1.8% +/- 8.5%, -2.5% +/- 13.9%, and -13.9% +/- 23.6%, respectively. For the bladder, the mean and standard deviation of the dose percentage differences for D20, D30, and D50 are -5.9% +/- 10.8%, -12.2% +/- 14.6%, and -24.9% +/- 21.2%, respectively. A negative percentage difference indicates that the new plan has greater dose sparing as compared to the original plan. CONCLUSIONS: The authors demonstrate a knowledge-based approach of using prior clinically approved treatment plans to generate clinically acceptable treatment plans of high quality. This semiautomated approach has the potential to improve the efficiency of the treatment planning process while ensuring that high quality plans are developed.
Resumo:
The stratification and differentiation of the epidermis are known to involve the precise control of multiple signaling pathways. By contrast, little is known about the development of the mouse esophagus and forestomach, which are composed of a stratified squamous epithelium. Based on prior work in the skin, we hypothesized that bone morphogenetic protein (BMP) signaling is a central player. To test this hypothesis, we first used a BMP reporter mouse line harboring a BRE-lacZ allele, along with in situ hybridization to localize transcripts for BMP signaling components, including various antagonists. We then exploited a Shh-Cre allele that drives recombination in the embryonic foregut epithelium to generate gain- or loss-of-function models for the Bmpr1a (Alk3) receptor. In gain-of-function (Shh-Cre;Rosa26(CAG-loxpstoploxp-caBmprIa)) embryos, high levels of ectopic BMP signaling stall the transition from simple columnar to multilayered undifferentiated epithelium in the esophagus and forestomach. In loss-of-function experiments, conditional deletion of the BMP receptor in Shh-Cre;Bmpr1a(flox/flox) embryos allows the formation of a multilayered squamous epithelium but this fails to differentiate, as shown by the absence of expression of the suprabasal markers loricrin and involucrin. Together, these findings suggest multiple roles for BMP signaling in the developing esophagus and forestomach.
Resumo:
Oxidative stress is a deleterious stressor associated with a plethora of disease and aging manifestations, including neurodegenerative disorders, yet very few factors and mechanisms promoting the neuroprotection of photoreceptor and other neurons against oxidative stress are known. Insufficiency of RAN-binding protein-2 (RANBP2), a large, mosaic protein with pleiotropic functions, suppresses apoptosis of photoreceptor neurons upon aging and light-elicited oxidative stress, and promotes age-dependent tumorigenesis by mechanisms that are not well understood. Here we show that, by downregulating selective partners of RANBP2, such as RAN GTPase, UBC9 and ErbB-2 (HER2; Neu), and blunting the upregulation of a set of orphan nuclear receptors and the light-dependent accumulation of ubiquitylated substrates, light-elicited oxidative stress and Ranbp2 haploinsufficiency have a selective effect on protein homeostasis in the retina. Among the nuclear orphan receptors affected by insufficiency of RANBP2, we identified an isoform of COUP-TFI (Nr2f1) as the only receptor stably co-associating in vivo with RANBP2 and distinct isoforms of UBC9. Strikingly, most changes in proteostasis caused by insufficiency of RANBP2 in the retina are not observed in the supporting tissue, the retinal pigment epithelium (RPE). Instead, insufficiency of RANBP2 in the RPE prominently suppresses the light-dependent accumulation of lipophilic deposits, and it has divergent effects on the accumulation of free cholesterol and free fatty acids despite the genotype-independent increase of light-elicited oxidative stress in this tissue. Thus, the data indicate that insufficiency of RANBP2 results in the cell-type-dependent downregulation of protein and lipid homeostasis, acting on functionally interconnected pathways in response to oxidative stress. These results provide a rationale for the neuroprotection from light damage of photosensory neurons by RANBP2 insufficiency and for the identification of novel therapeutic targets and approaches promoting neuroprotection.
Resumo:
The small airways of the human lung undergo pathological changes in pulmonary disorders, such as chronic obstructive pulmonary disease (COPD), asthma, bronchiolitis obliterans and cystic fibrosis. These clinical problems impose huge personal and societal healthcare burdens. The changes, termed 'pathological airway remodeling', affect the epithelium, the underlying mesenchyme and the reciprocal trophic interactions that occur between these tissues. Most of the normal human airway is lined by a pseudostratified epithelium of ciliated cells, secretory cells and 6-30% basal cells, the proportion of which varies along the proximal-distal axis. Epithelial abnormalities range from hypoplasia (failure to differentiate) to basal- and goblet-cell hyperplasia, squamous- and goblet-cell metaplasia, dysplasia and malignant transformation. Mesenchymal alterations include thickening of the basal lamina, smooth muscle hyperplasia, fibrosis and inflammatory cell accumulation. Paradoxically, given the prevalence and importance of airway remodeling in lung disease, its etiology is poorly understood. This is due, in part, to a lack of basic knowledge of the mechanisms that regulate the differentiation, maintenance and repair of the airway epithelium. Specifically, little is known about the proliferation and differentiation of basal cells, a multipotent stem cell population of the pseudostratified airway epithelium. This Perspective summarizes what we know, and what we need to know, about airway basal cells to evaluate their contributions to normal and abnormal airway remodeling. We contend that exploiting well-described model systems using both human airway epithelial cells and the pseudostratified epithelium of the genetically tractable mouse trachea will enable crucial discoveries regarding the pathogenesis of airway disease.
Resumo:
Thymic graft-versus-host disease (tGVHD) can contribute to profound T cell deficiency and repertoire restriction after allogeneic BM transplantation (allo-BMT). However, the cellular mechanisms of tGVHD and interactions between donor alloreactive T cells and thymic tissues remain poorly defined. Using clinically relevant murine allo-BMT models, we show here that even minimal numbers of donor alloreactive T cells, which caused mild nonlethal systemic graft-versus-host disease, were sufficient to damage the thymus, delay T lineage reconstitution, and compromise donor peripheral T cell function. Furthermore, to mediate tGVHD, donor alloreactive T cells required trafficking molecules, including CCR9, L selectin, P selectin glycoprotein ligand-1, the integrin subunits alphaE and beta7, CCR2, and CXCR3, and costimulatory/inhibitory molecules, including Ox40 and carcinoembryonic antigen-associated cell adhesion molecule 1. We found that radiation in BMT conditioning regimens upregulated expression of the death receptors Fas and death receptor 5 (DR5) on thymic stromal cells (especially epithelium), while decreasing expression of the antiapoptotic regulator cellular caspase-8-like inhibitory protein. Donor alloreactive T cells used the cognate proteins FasL and TNF-related apoptosis-inducing ligand (TRAIL) (but not TNF or perforin) to mediate tGVHD, thereby damaging thymic stromal cells, cytoarchitecture, and function. Strategies that interfere with Fas/FasL and TRAIL/DR5 interactions may therefore represent a means to attenuate tGVHD and improve T cell reconstitution in allo-BMT recipients.
Resumo:
BACKGROUND: SOX2 (Sry-box 2) is required to maintain a variety of stem cells, is overexpressed in some solid tumors, and is expressed in epithelial cells of the lung. METHODOLOGY/PRINCIPAL FINDINGS: We show that SOX2 is overexpressed in human squamous cell lung tumors and some adenocarcinomas. We have generated mouse models in which Sox2 is upregulated in epithelial cells of the lung during development and in the adult. In both cases, overexpression leads to extensive hyperplasia. In the terminal bronchioles, a trachea-like pseudostratified epithelium develops with p63-positive cells underlying columnar cells. Over 12-34 weeks, about half of the mice expressing the highest levels of Sox2 develop carcinoma. These tumors resemble adenocarcinoma but express the squamous marker, Trp63 (p63). CONCLUSIONS: These findings demonstrate that Sox2 overexpression both induces a proximal phenotype in the distal airways/alveoli and leads to cancer.
Resumo:
BACKGROUND: Small laboratory fish share many anatomical and histological characteristics with other vertebrates, yet can be maintained in large numbers at low cost for lifetime studies. Here we characterize biomarkers associated with normal aging in the Japanese medaka (Oryzias latipes), a species that has been widely used in toxicology studies and has potential utility as a model organism for experimental aging research. PRINCIPAL FINDINGS: The median lifespan of medaka was approximately 22 months under laboratory conditions. We performed quantitative histological analysis of tissues from age-grouped individuals representing young adults (6 months old), mature adults (16 months old), and adults that had survived beyond the median lifespan (24 months). Livers of 24-month old individuals showed extensive morphologic changes, including spongiosis hepatis, steatosis, ballooning degeneration, inflammation, and nuclear pyknosis. There were also phagolysosomes, vacuoles, and residual bodies in parenchymal cells and congestion of sinusoidal vessels. Livers of aged individuals were characterized by increases in lipofuscin deposits and in the number of TUNEL-positive apoptotic cells. Some of these degenerative characteristics were seen, to a lesser extent, in the livers of 16-month old individuals, but not in 6-month old individuals. The basal layer of the dermis showed an age-dependent decline in the number of dividing cells and an increase in senescence-associated β-galactosidase. The hearts of aged individuals were characterized by fibrosis and lipofuscin deposition. There was also a loss of pigmented cells from the retinal epithelium. By contrast, age-associated changes were not apparent in skeletal muscle, the ocular lens, or the brain. SIGNIFICANCE: The results provide a set of markers that can be used to trace the process of normal tissue aging in medaka and to evaluate the effect of environmental stressors.
Resumo:
The Haemophilus influenzae HMW1 adhesin is a high-molecular weight protein that is secreted by the bacterial two-partner secretion pathway and mediates adherence to respiratory epithelium, an essential early step in the pathogenesis of H. influenzae disease. In recent work, we discovered that HMW1 is a glycoprotein and undergoes N-linked glycosylation at multiple asparagine residues with simple hexose units rather than N-acetylated hexose units, revealing an unusual N-glycosidic linkage and suggesting a new glycosyltransferase activity. Glycosylation protects HMW1 against premature degradation during the process of secretion and facilitates HMW1 tethering to the bacterial surface, a prerequisite for HMW1-mediated adherence. In the current study, we establish that the enzyme responsible for glycosylation of HMW1 is a protein called HMW1C, which is encoded by the hmw1 gene cluster and shares homology with a group of bacterial proteins that are generally associated with two-partner secretion systems. In addition, we demonstrate that HMW1C is capable of transferring glucose and galactose to HMW1 and is also able to generate hexose-hexose bonds. Our results define a new family of bacterial glycosyltransferases.
Resumo:
PURPOSE: Malignant ureteral obstruction often necessitates chronic urinary diversion and is associated with high rates of failure with traditional ureteral stents. We evaluated the outcomes of a metallic stent placed for malignant ureteral obstruction and determined the impact of risk factors previously associated with increased failure rates of traditional stents. MATERIALS AND METHODS: Patients undergoing placement of the metallic Resonance® stent for malignant ureteral obstruction at an academic referral center were identified retrospectively. Stent failure was defined as unplanned stent exchange or nephrostomy tube placement for signs or symptoms of recurrent ureteral obstruction (recurrent hydroureteronephrosis or increasing creatinine). Predictors of time to stent failure were assessed using Cox regression. RESULTS: A total of 37 stents were placed in 25 patients with malignant ureteral obstruction. Of these stents 12 (35%) were identified to fail. Progressive hydroureteronephrosis and increasing creatinine were the most common signs of stent failure. Three failed stents had migrated distally and no stents required removal for recurrent infection. Patients with evidence of prostate cancer invading the bladder at stent placement were found to have a significantly increased risk of failure (HR 6.50, 95% CI 1.45-29.20, p = 0.015). Notably symptomatic subcapsular hematomas were identified in 3 patients after metallic stent placement. CONCLUSIONS: Failure rates with a metallic stent are similar to those historically observed with traditional polyurethane based stents in malignant ureteral obstruction. The invasion of prostate cancer in the bladder significantly increases the risk of failure. Patients should be counseled and observed for subcapsular hematoma formation with this device.
Resumo:
We have previously shown that second-messenger-dependent kinases (cAMP-dependent kinase, protein kinase C) in the olfactory system are essential in terminating second-messenger signaling in response to odorants. We now document that subtype 2 of the beta-adrenergic receptor kinase (beta ARK) is also involved in this process. By using subtype-specific antibodies to beta ARK-1 and beta ARK-2, we show that beta ARK-2 is preferentially expressed in the olfactory epithelium in contrast to findings in most other tissues. Heparin, an inhibitor of beta ARK, as well as anti-beta ARK-2 antibodies, (i) completely prevents the rapid decline of second-messenger signals (desensitization) that follows odorant stimulation and (ii) strongly inhibits odorant-induced phosphorylation of olfactory ciliary proteins. In contrast, beta ARK-1 antibodies are without effect. Inhibitors of protein kinase A and protein kinase C also block odorant-induced desensitization and phosphorylation. These data suggest that a sequential interplay of second-messenger-dependent and receptor-specific kinases is functionally involved in olfactory desensitization.