16 resultados para Ocular biometry
Resumo:
The Singapore Cohort Study of the Risk Factors for myopia (SCORM) is a longitudinal school-based study that recruited 1979 children, aged 7 to 9 years old between 1999 and 2001, who were re-examined as adolescents in 2006 and 2007. This current study is to determine the prevalence, incidence and progression of myopia among Singapore teenagers and describe any trend in the SCORM study.
At each visit, participants underwent comprehensive eye examinations that included cycloplegic autorefraction and ocular biometry measurements. The prevalence of myopia (SE<-0.5D) and high myopia (SE<-6.0D) among Singapore teenagers aged 11-18 years old was 69.1% [95% confidence interval (CI) 66.5-71.7] and 7.1% (95% CI 5.8-8.7), respectively, with the highest prevalence in people of Chinese ethnicity (p<0.001). The annual incidence was 13.7% (95% CI 9.8-17.6). Males had twice the incidence of females (p=0.043), and adolescents with longer axial lengths (p<0.001) and deeper vitreous chamber (p<0.001) had higher myopia incidence. Annual myopia progression was -0.32 Diopters (D) (SD=0.40), with no difference by age, race or gender. However, adolescents with higher myopia levels at 2006 had significantly faster myopia progression rates (p<0.001).
Myopia prevalence in Singapore teenagers, especially Singapore Chinese teenagers, is one of the highest in the world. In adolescents, there is still a high rate of new onset and rapid progression of myopia. These findings indicate that adolescence may still represent a viable period for intervention programs to mitigate myopia onset and progression.
Resumo:
Recent evidence that echinoids of the genus Echinometra have moderate visual acuity that appears to be mediated by their spines screening off-axis light suggests that the urchin Strongylocentrotus purpuratus, with its higher spine density, may have even more acute spatial vision. We analyzed the movements of 39 specimens of S. purpuratus after they were placed in the center of a featureless tank containing a round, black target that had an angular diameter of 6.5 deg. or 10 deg. (solid angles of 0.01 sr and 0.024 sr, respectively). An average orientation vector for each urchin was determined by testing the animal four times, with the target placed successively at bearings of 0 deg., 90 deg., 180 deg. and 270 deg. (relative to magnetic east). The urchins showed no significant unimodal or axial orientation relative to any non-target feature of the environment or relative to the changing position of the 6.5 deg. target. However, the urchins were strongly axially oriented relative to the changing position of the 10 deg. target (mean axis from -1 to 179 deg.; 95% confidence interval +/- 12 deg.; P<0.001, Moore's non-parametric Hotelling's test), with 10 of the 20 urchins tested against that target choosing an average bearing within 10 deg. of either the target center or its opposite direction (two would be expected by chance). In addition, the average length of the 20 target-normalized bearings for the 10 deg. target (each the vector sum of the bearings for the four trials) were far higher than would be expected by chance (P<10(-10); Monte Carlo simulation), showing that each urchin, whether it moved towards or away from the target, did so with high consistency. These results strongly suggest that S. purpuratus detected the 10 deg. target, responding either by approaching it or fleeing it. Given that the urchins did not appear to respond to the 6.5 deg. target, it is likely that the 10 deg. target was close to the minimum detectable size for this species. Interestingly, measurements of the spine density of the regions of the test that faced horizontally predicted a similar visual resolution (8.3+/-0.5 deg. for the interambulacrum and 11+/-0.54 deg. for the ambulacrum). The function of this relatively low, but functional, acuity - on par with that of the chambered Nautilus and the horseshoe crab - is unclear but, given the bimodal response, is likely to be related to both shelter seeking and predator avoidance.
Resumo:
Segmentation of anatomical and pathological structures in ophthalmic images is crucial for the diagnosis and study of ocular diseases. However, manual segmentation is often a time-consuming and subjective process. This paper presents an automatic approach for segmenting retinal layers in Spectral Domain Optical Coherence Tomography images using graph theory and dynamic programming. Results show that this method accurately segments eight retinal layer boundaries in normal adult eyes more closely to an expert grader as compared to a second expert grader.
Resumo:
Capable of three-dimensional imaging of the cornea with micrometer-scale resolution, spectral domain-optical coherence tomography (SDOCT) offers potential advantages over Placido ring and Scheimpflug photography based systems for accurate extraction of quantitative keratometric parameters. In this work, an SDOCT scanning protocol and motion correction algorithm were implemented to minimize the effects of patient motion during data acquisition. Procedures are described for correction of image data artifacts resulting from 3D refraction of SDOCT light in the cornea and from non-idealities of the scanning system geometry performed as a pre-requisite for accurate parameter extraction. Zernike polynomial 3D reconstruction and a recursive half searching algorithm (RHSA) were implemented to extract clinical keratometric parameters including anterior and posterior radii of curvature, central cornea optical power, central corneal thickness, and thickness maps of the cornea. Accuracy and repeatability of the extracted parameters obtained using a commercial 859nm SDOCT retinal imaging system with a corneal adapter were assessed using a rigid gas permeable (RGP) contact lens as a phantom target. Extraction of these parameters was performed in vivo in 3 patients and compared to commercial Placido topography and Scheimpflug photography systems. The repeatability of SDOCT central corneal power measured in vivo was 0.18 Diopters, and the difference observed between the systems averaged 0.1 Diopters between SDOCT and Scheimpflug photography, and 0.6 Diopters between SDOCT and Placido topography.
Resumo:
BACKGROUND: Small laboratory fish share many anatomical and histological characteristics with other vertebrates, yet can be maintained in large numbers at low cost for lifetime studies. Here we characterize biomarkers associated with normal aging in the Japanese medaka (Oryzias latipes), a species that has been widely used in toxicology studies and has potential utility as a model organism for experimental aging research. PRINCIPAL FINDINGS: The median lifespan of medaka was approximately 22 months under laboratory conditions. We performed quantitative histological analysis of tissues from age-grouped individuals representing young adults (6 months old), mature adults (16 months old), and adults that had survived beyond the median lifespan (24 months). Livers of 24-month old individuals showed extensive morphologic changes, including spongiosis hepatis, steatosis, ballooning degeneration, inflammation, and nuclear pyknosis. There were also phagolysosomes, vacuoles, and residual bodies in parenchymal cells and congestion of sinusoidal vessels. Livers of aged individuals were characterized by increases in lipofuscin deposits and in the number of TUNEL-positive apoptotic cells. Some of these degenerative characteristics were seen, to a lesser extent, in the livers of 16-month old individuals, but not in 6-month old individuals. The basal layer of the dermis showed an age-dependent decline in the number of dividing cells and an increase in senescence-associated β-galactosidase. The hearts of aged individuals were characterized by fibrosis and lipofuscin deposition. There was also a loss of pigmented cells from the retinal epithelium. By contrast, age-associated changes were not apparent in skeletal muscle, the ocular lens, or the brain. SIGNIFICANCE: The results provide a set of markers that can be used to trace the process of normal tissue aging in medaka and to evaluate the effect of environmental stressors.
Resumo:
PURPOSE: To develop a mathematical model that can predict refractive changes after Descemet stripping endothelial keratoplasty (DSEK). METHODS: A mathematical formula based on the Gullstrand eye model was generated to estimate the change in refractive power of the eye after DSEK. This model was applied to four DSEK cases retrospectively, to compare measured and predicted refractive changes after DSEK. RESULTS: The refractive change after DSEK is determined by calculating the difference in the power of the eye before and after DSEK surgery. The power of the eye post-DSEK surgery can be calculated with modified Gullstrand eye model equations that incorporate the change in the posterior radius of curvature and change in the distance between the principal planes of the cornea and lens after DSEK. Analysis of this model suggests that the ratio of central to peripheral graft thickness (CP ratio) and central thickness can have significant effect on refractive change where smaller CP ratios and larger graft thicknesses result in larger hyperopic shifts. This model was applied to four patients, and the average predicted hyperopic shift in the overall power of the eye was calculated to be 0.83 D. This change reflected in a mean of 93% (range, 75%-110%) of patients' measured refractive shifts. CONCLUSIONS: This simplified DSEK mathematical model can be used as a first step for estimating the hyperopic shift after DSEK. Further studies are necessary to refine the validity of this model.
Resumo:
Ecosystems are being altered on a global scale by the extirpation of top predators. The ecological effects of predator removal have been investigated widely; however, predator removal can also change natural selection acting on prey, resulting in contemporary evolution. Here we tested the role of predator removal on the contemporary evolution of trophic traits in prey. We utilized a historical introduction experiment where Trinidadian guppies (Poecilia reticulata) were relocated from a site with predatory fishes to a site lacking predators. To assess the trophic consequences of predator release, we linked individual morphology (cranial, jaw, and body) to foraging performance. Our results show that predator release caused an increase in guppy density and a "sharpening" of guppy trophic traits, which enhanced food consumption rates. Predator release appears to have shifted natural selection away from predator escape ability and towards resource acquisition ability. Related diet and mesocosm studies suggest that this shift enhances the impact of guppies on lower trophic levels in a fashion nuanced by the omnivorous feeding ecology of the species. We conclude that extirpation of top predators may commonly select for enhanced feeding performance in prey, with important cascading consequences for communities and ecosystems.
Resumo:
Using functional magnetic resonance imaging (fMRI), we investigated brain activity evoked by mutual and averted gaze in a compelling and commonly experienced social encounter. Through virtual-reality goggles, subjects viewed a man who walked toward them and shifted his neutral gaze either toward (mutual gaze) or away (averted gaze) from them. Robust activity was evoked in the superior temporal sulcus (STS) and fusiform gyrus (FFG). For both conditions, STS activity was strongly right lateralized. Mutual gaze evoked greater activity in the STS than did averted gaze, whereas the FFG responded equivalently to mutual and averted gaze. Thus, we show that the STS is involved in processing social information conveyed by shifts in gaze within an overtly social context. This study extends understanding of the role of the STS in social cognition and social perception by demonstrating that it is highly sensitive to the context in which a human action occurs.
Resumo:
Small bistratified cells (SBCs) in the primate retina carry a major blue-yellow opponent signal to the brain. We found that SBCs also carry signals from rod photoreceptors, with the same sign as S cone input. SBCs exhibited robust responses under low scotopic conditions. Physiological and anatomical experiments indicated that this rod input arose from the AII amacrine cell-mediated rod pathway. Rod and cone signals were both present in SBCs at mesopic light levels. These findings have three implications. First, more retinal circuits may multiplex rod and cone signals than were previously thought to, efficiently exploiting the limited number of optic nerve fibers. Second, signals from AII amacrine cells may diverge to most or all of the approximately 20 retinal ganglion cell types in the peripheral primate retina. Third, rod input to SBCs may be the substrate for behavioral biases toward perception of blue at mesopic light levels.
Resumo:
The spiking activity of nearby cortical neurons is correlated on both short and long time scales. Understanding this shared variability in firing patterns is critical for appreciating the representation of sensory stimuli in ensembles of neurons, the coincident influences of neurons on common targets, and the functional implications of microcircuitry. Our knowledge about neuronal correlations, however, derives largely from experiments that used different recording methods, analysis techniques, and cortical regions. Here we studied the structure of neuronal correlation in area V4 of alert macaques using recording and analysis procedures designed to match those used previously in primary visual cortex (V1), the major input to V4. We found that the spatial and temporal properties of correlations in V4 were remarkably similar to those of V1, with two notable differences: correlated variability in V4 was approximately one-third the magnitude of that in V1 and synchrony in V4 was less temporally precise than in V1. In both areas, spontaneous activity (measured during fixation while viewing a blank screen) was approximately twice as correlated as visual-evoked activity. The results provide a foundation for understanding how the structure of neuronal correlation differs among brain regions and stages in cortical processing and suggest that it is likely governed by features of neuronal circuits that are shared across the visual cortex.
Resumo:
The image on the retina may move because the eyes move, or because something in the visual scene moves. The brain is not fooled by this ambiguity. Even as we make saccades, we are able to detect whether visual objects remain stable or move. Here we test whether this ability to assess visual stability across saccades is present at the single-neuron level in the frontal eye field (FEF), an area that receives both visual input and information about imminent saccades. Our hypothesis was that neurons in the FEF report whether a visual stimulus remains stable or moves as a saccade is made. Monkeys made saccades in the presence of a visual stimulus outside of the receptive field. In some trials, the stimulus remained stable, but in other trials, it moved during the saccade. In every trial, the stimulus occupied the center of the receptive field after the saccade, thus evoking a reafferent visual response. We found that many FEF neurons signaled, in the strength and timing of their reafferent response, whether the stimulus had remained stable or moved. Reafferent responses were tuned for the amount of stimulus translation, and, in accordance with human psychophysics, tuning was better (more prevalent, stronger, and quicker) for stimuli that moved perpendicular, rather than parallel, to the saccade. Tuning was sometimes present as well for nonspatial transaccadic changes (in color, size, or both). Our results indicate that FEF neurons evaluate visual stability during saccades and may be general purpose detectors of transaccadic visual change.
Resumo:
The obligate intracellular bacterium Chlamydia trachomatis is a major human pathogen and a main cause of genital and ocular diseases. During its intracellular cycle, C. trachomatis replicates inside a membrane-bound vacuole termed an "inclusion". Acquisition of lipids (and other nutrients) from the host cell is a critical step in chlamydial replication. Lipid droplets (LD) are ubiquitous, ER-derived neutral lipid-rich storage organelles surrounded by a phospholipids monolayer and associated proteins. Previous studies have shown that LDs accumulate at the periphery of, and eventually translocate into, the chlamydial inclusion. These observations point out to Chlamydia-mediated manipulation of LDs in infected cells, which may impact the function and thereby the protein composition of these organelles. By means of a label-free quantitative mass spectrometry approach we found that the LD proteome is modified in the context of C. trachomatis infection. We determined that LDs isolated from C. trachomatis-infected cells were enriched in proteins related to lipid metabolism, biosynthesis and LD-specific functions. Interestingly, consistent with the observation that LDs intimately associate with the inclusion, a subset of inclusion membrane proteins co-purified with LD protein extracts. Finally, genetic ablation of LDs negatively affected generation of C. trachomatis infectious progeny, consistent with a role for LD biogenesis in optimal chlamydial growth.
Resumo:
Periodic visual stimulation and analysis of the resulting steady-state visual evoked potentials were first introduced over 80 years ago as a means to study visual sensation and perception. From the first single-channel recording of responses to modulated light to the present use of sophisticated digital displays composed of complex visual stimuli and high-density recording arrays, steady-state methods have been applied in a broad range of scientific and applied settings.The purpose of this article is to describe the fundamental stimulation paradigms for steady-state visual evoked potentials and to illustrate these principles through research findings across a range of applications in vision science.
Resumo:
One way we keep track of our movements is by monitoring corollary discharges or internal copies of movement commands. This study tested a hypothesis that the pathway from superior colliculus (SC) to mediodorsal thalamus (MD) to frontal eye field (FEF) carries a corollary discharge about saccades made into the contralateral visual field. We inactivated the MD relay node with muscimol in monkeys and measured corollary discharge deficits using a double-step task: two sequential saccades were made to the locations of briefly flashed targets. To make second saccades correctly, monkeys had to internally monitor their first saccades; therefore deficits in the corollary discharge representation of first saccades should disrupt second saccades. We found, first, that monkeys seemed to misjudge the amplitudes of their first saccades; this was revealed by systematic shifts in second saccade end points. Thus corollary discharge accuracy was impaired. Second, monkeys were less able to detect trial-by-trial variations in their first saccades; this was revealed by reduced compensatory changes in second saccade angles. Thus corollary discharge precision also was impaired. Both deficits occurred only when first saccades went into the contralateral visual field. Single-saccade generation was unaffected. Additional deficits occurred in reaction time and overall performance, but these were bilateral. We conclude that the SC-MD-FEF pathway conveys a corollary discharge used for coordinating sequential saccades and possibly for stabilizing vision across saccades. This pathway is the first elucidated in what may be a multilevel chain of corollary discharge circuits extending from the extraocular motoneurons up into cerebral cortex.
Resumo:
It is essential to keep track of the movements we make, and one way to do that is to monitor correlates, or corollary discharges, of neuronal movement commands. We hypothesized that a previously identified pathway from brainstem to frontal cortex might carry corollary discharge signals. We found that neuronal activity in this pathway encodes upcoming eye movements and that inactivating the pathway impairs sequential eye movements consistent with loss of corollary discharge without affecting single eye movements. These results identify a pathway in the brain of the primate Macaca mulatta that conveys corollary discharge signals.