20 resultados para Multiple Factor Role


Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: The lactogenic hormones prolactin (PRL) and placental lactogens (PL) play central roles in reproduction and mammary development. Their actions are mediated via binding to PRL receptor (PRLR), highly expressed in brown adipose tissue (BAT), yet their impact on adipocyte function and metabolism remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: PRLR knockout (KO) newborn mice were phenotypically characterized in terms of thermoregulation and their BAT differentiation assayed for gene expression studies. Derived brown preadipocyte cell lines were established to evaluate the molecular mechanisms involved in PRL signaling on BAT function. Here, we report that newborn mice lacking PRLR have hypotrophic BAT depots that express low levels of adipocyte nuclear receptor PPARgamma2, its coactivator PGC-1alpha, uncoupling protein 1 (UCP1) and the beta3 adrenoceptor, reducing mouse viability during cold challenge. Immortalized PRLR KO preadipocytes fail to undergo differentiation into mature adipocytes, a defect reversed by reintroduction of PRLR. That the effects of the lactogens in BAT are at least partly mediated by Insulin-like Growth Factor-2 (IGF-2) is supported by: i) a striking reduction in BAT IGF-2 expression in PRLR KO mice and in PRLR-deficient preadipocytes; ii) induction of cellular IGF-2 expression by PRL through JAK2/STAT5 pathway activation; and iii) reversal of defective differentiation in PRLR KO cells by exogenous IGF-2. CONCLUSIONS: Our findings demonstrate that the lactogens act in concert with IGF-2 to control brown adipocyte differentiation and growth. Given the prominent role of brown adipose tissue during the perinatal period, our results identified prolactin receptor signaling as a major player and a potential therapeutic target in protecting newborn mammals against hypothermia.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have isolated and sequenced a cDNA encoding the human beta 2-adrenergic receptor. The deduced amino acid sequence (413 residues) is that of a protein containing seven clusters of hydrophobic amino acids suggestive of membrane-spanning domains. While the protein is 87% identical overall with the previously cloned hamster beta 2-adrenergic receptor, the most highly conserved regions are the putative transmembrane helices (95% identical) and cytoplasmic loops (93% identical), suggesting that these regions of the molecule harbor important functional domains. Several of the transmembrane helices also share lesser degrees of identity with comparable regions of select members of the opsin family of visual pigments. We have localized the gene for the beta 2-adrenergic receptor to q31-q32 on chromosome 5. This is the same position recently determined for the gene encoding the receptor for platelet-derived growth factor and is adjacent to that for the FMS protooncogene, which encodes the receptor for the macrophage colony-stimulating factor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship of mitochondrial dynamics and function to pluripotency are rather poorly understood aspects of stem cell biology. Here we show that growth factor erv1-like (Gfer) is involved in preserving mouse embryonic stem cell (ESC) mitochondrial morphology and function. Knockdown (KD) of Gfer in ESCs leads to decreased pluripotency marker expression, embryoid body (EB) formation, cell survival, and loss of mitochondrial function. Mitochondria in Gfer-KD ESCs undergo excessive fragmentation and mitophagy, whereas those in ESCs overexpressing Gfer appear elongated. Levels of the mitochondrial fission GTPase dynamin-related protein 1 (Drp1) are highly elevated in Gfer-KD ESCs and decreased in Gfer-overexpressing cells. Treatment with a specific inhibitor of Drp1 rescues mitochondrial function and apoptosis, whereas expression of Drp1-dominant negative resulted in the restoration of pluripotency marker expression in Gfer-KD ESCs. Altogether, our data reveal a novel prosurvival role for Gfer in maintaining mitochondrial fission-fusion dynamics in pluripotent ESCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Loss of PTEN and activation of phosphoinositide 3-kinase are commonly observed in advanced prostate cancer. Inhibition of mammalian target of rapamycin (mTOR), a downstream target of phosphoinositide 3-kinase signaling, results in cell cycle arrest and apoptosis in multiple in vitro and in vivo models of prostate cancer. However, single-agent use of mTOR inhibition has limited clinical success, and the identification of molecular events mitigating tumor response to mTOR inhibition remains a critical question. Here, using genetically engineered human prostate epithelial cells (PrEC), we show that MYC, a frequent target of genetic gain in prostate cancers, abrogates sensitivity to rapamycin by decreasing rapamycin-induced cytostasis and autophagy. Analysis of MYC and the mTOR pathway in human prostate tumors and PrEC showed selective increased expression of eukaryotic initiation factor 4E-binding protein 1 (4EBP1) with gain in MYC copy number or forced MYC expression, respectively. We have also found that MYC binds to regulatory regions of the 4EBP1 gene. Suppression of 4EBP1 expression resulted in resensitization of MYC-expressing PrEC to rapamycin and increased autophagy. Taken together, our findings suggest that MYC expression abrogates sensitivity to rapamycin through increased expression of 4EBP1 and reduced autophagy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neurodegenerative diseases such as Huntington disease are devastating disorders with no therapeutic approaches to ameliorate the underlying protein misfolding defect inherent to poly-glutamine (polyQ) proteins. Given the mounting evidence that elevated levels of protein chaperones suppress polyQ protein misfolding, the master regulator of protein chaperone gene transcription, HSF1, is an attractive target for small molecule intervention. We describe a humanized yeast-based high-throughput screen to identify small molecule activators of human HSF1. This screen is insensitive to previously characterized activators of the heat shock response that have undesirable proteotoxic activity or that inhibit Hsp90, the central chaperone for cellular signaling and proliferation. A molecule identified in this screen, HSF1A, is structurally distinct from other characterized small molecule human HSF1 activators, activates HSF1 in mammalian and fly cells, elevates protein chaperone expression, ameliorates protein misfolding and cell death in polyQ-expressing neuronal precursor cells and protects against cytotoxicity in a fly model of polyQ-mediated neurodegeneration. In addition, we show that HSF1A interacts with components of the TRiC/CCT complex, suggesting a potentially novel regulatory role for this complex in modulating HSF1 activity. These studies describe a novel approach for the identification of new classes of pharmacological interventions for protein misfolding that underlies devastating neurodegenerative disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Monogamy, together with abstinence, partner reduction, and condom use, is widely advocated as a key behavioral strategy to prevent HIV infection in sub-Saharan Africa. We examined the association between the number of sexual partners and the risk of HIV seropositivity among men and women presenting for HIV voluntary counseling and testing (VCT) in northern Tanzania. METHODOLOGY/ PRINCIPAL FINDINGS: Clients presenting for HIV VCT at a community-based AIDS service organization in Moshi, Tanzania were surveyed between November 2003 and December 2007. Data on sociodemographic characteristics, reasons for testing, sexual behaviors, and symptoms were collected. Men and women were categorized by number of lifetime sexual partners, and rates of seropositivity were reported by category. Factors associated with HIV seropositivity among monogamous males and females were identified by a multivariate logistic regression model. Of 6,549 clients, 3,607 (55%) were female, and the median age was 30 years (IQR 24-40). 939 (25%) females and 293 (10%) males (p<0.0001) were HIV seropositive. Among 1,244 (34%) monogamous females and 423 (14%) monogamous males, the risk of HIV infection was 19% and 4%, respectively (p<0.0001). The risk increased monotonically with additional partners up to 45% (p<0.001) and 15% (p<0.001) for women and men, respectively with 5 or more partners. In multivariate analysis, HIV seropositivity among monogamous women was most strongly associated with age (p<0.0001), lower education (p<0.004), and reporting a partner with other partners (p = 0.015). Only age was a significant risk factor for monogamous men (p = 0.0004). INTERPRETATION: Among women presenting for VCT, the number of partners is strongly associated with rates of seropositivity; however, even women reporting lifetime monogamy have a high risk for HIV infection. Partner reduction should be coupled with efforts to place tools in the hands of sexually active women to reduce their risk of contracting HIV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Inflammatory bowel disease (IBD) is hypothesized to result from stimulation of immune responses against resident intestinal bacteria within a genetically susceptible host. Mast cells may play a critical role in IBD pathogenesis, since they are typically located just beneath the intestinal mucosal barrier and can be activated by bacterial antigens. METHODOLOGY/PRINCIPAL FINDINGS: This study investigated effects of mast cells on inflammation and associated neoplasia in IBD-susceptible interleukin (IL)-10-deficient mice with and without mast cells. IL-10-deficient mast cells produced more pro-inflammatory cytokines in vitro both constitutively and when triggered, compared with wild type mast cells. However despite this enhanced in vitro response, mast cell-sufficient Il10(-/-) mice actually had decreased cecal expression of tumor necrosis factor (TNF) and interferon (IFN)-gamma mRNA, suggesting that mast cells regulate inflammation in vivo. Mast cell deficiency predisposed Il10(-/-) mice to the development of spontaneous colitis and resulted in increased intestinal permeability in vivo that preceded the development of colon inflammation. However, mast cell deficiency did not affect the severity of IBD triggered by non-steroidal anti-inflammatory agents (NSAID) exposure or helicobacter infection that also affect intestinal permeability. CONCLUSIONS/SIGNIFICANCE: Mast cells thus appear to have a primarily protective role within the colonic microenvironment by enhancing the efficacy of the mucosal barrier. In addition, although mast cells were previously implicated in progression of sporadic colon cancers, mast cells did not affect the incidence or severity of colonic neoplasia in this inflammation-associated model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural killer (NK) cells play an essential role in innate immune control of poxviral infections in vivo. However, the mechanism(s) underlying NK cell activation and function in response to poxviruses remains poorly understood. In a mouse model of infection with vaccinia virus (VV), the most studied member of the poxvirus family, we identified that the Toll-like receptor (TLR) 2-myeloid differentiating factor 88 (MyD88) pathway was critical for the activation of NK cells and the control of VV infection in vivo. We further showed that TLR2 signaling on NK cells, but not on accessory cells such as dendritic cells (DCs), was necessary for NK cell activation and that this intrinsic TLR2-MyD88 signaling pathway was required for NK cell activation and played a critical role in the control of VV infection in vivo. In addition, we showed that the activating receptor NKG2D was also important for efficient NK activation and function, as well as recognition of VV-infected targets. We further demonstrated that VV could directly activate NK cells via TLR2 in the presence of cytokines in vitro and TLR2-MyD88-dependent activation of NK cells by VV was mediated through the phosphatidylinositol 3-kinase (PI3K)-extracellular signal-regulated kinase (ERK) pathway. Taken together, these results represent the first evidence that intrinsic TLR signaling is critical for NK cell activation and function in the control of a viral infection in vivo, indicate that multiple pathways are required for efficient NK cell activation and function in response to VV infection, and may provide important insights into the design of effective strategies to combat poxviral infections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Externalizing behavior problems of 124 adolescents were assessed across Grades 7-11. In Grade 9, participants were also assessed across social-cognitive domains after imagining themselves as the object of provocations portrayed in six videotaped vignettes. Participants responded to vignette-based questions representing multiple processes of the response decision step of social information processing. Phase 1 of our investigation supported a two-factor model of the response evaluation process of response decision (response valuation and outcome expectancy). Phase 2 showed significant relations between the set of these response decision processes, as well as response selection, measured in Grade 9 and (a) externalizing behavior in Grade 9 and (b) externalizing behavior in Grades 10-11, even after controlling externalizing behavior in Grades 7-8. These findings suggest that on-line behavioral judgments about aggression play a crucial role in the maintenance and growth of aggressive response tendencies in adolescence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, we identified a GTPase-activating protein for the ADP ribosylation factor family of small GTP-binding proteins that we call GIT1. This protein initially was identified as an interacting partner for the G protein-coupled receptor kinases, and its overexpression was found to affect signaling and internalization of the prototypical beta(2)-adrenergic receptor. Here, we report that GIT1 overexpression regulates internalization of numerous, but not all, G protein-coupled receptors. The specificity of the GIT1 effect is not related to the type of G protein to which a receptor couples, but rather to the endocytic route it uses. GIT1 only affects the function of G protein-coupled receptors that are internalized through the clathrin-coated pit pathway in a beta-arrestin- and dynamin-sensitive manner. Furthermore, the GIT1 effect is not limited to G protein-coupled receptors because overexpression of this protein also affects internalization of the epidermal growth factor receptor. However, constitutive agonist-independent internalization is not regulated by GIT1, because transferrin uptake is not affected by GIT1 overexpression. Thus, GIT1 is a protein involved in regulating the function of signaling receptors internalized through the clathrin pathway and can be used as a diagnostic tool for defining the endocytic pathway of a receptor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Na+/H+ exchanger regulatory factor (NHERF) binds to the tail of the beta2-adrenergic receptor and plays a role in adrenergic regulation of Na+/H+ exchange. NHERF contains two PDZ domains, the first of which is required for its interaction with the beta2 receptor. Mutagenesis studies of the beta2 receptor tail revealed that the optimal C-terminal motif for binding to the first PDZ domain of NHERF is D-S/T-x-L, a motif distinct from those recognized by other PDZ domains. The first PDZ domain of NHERF-2, a protein that is 52% identical to NHERF and also known as E3KARP, SIP-1, and TKA-1, exhibits binding preferences very similar to those of the first PDZ domain of NHERF. The delineation of the preferred binding motif for the first PDZ domain of the NHERF family of proteins allows for predictions for other proteins that may interact with NHERF or NHERF-2. For example, as would be predicted from the beta2 receptor tail mutagenesis studies, NHERF binds to the tail of the purinergic P2Y1 receptor, a seven-transmembrane receptor with an intracellular C-terminal tail ending in D-T-S-L. NHERF also binds to the tail of the cystic fibrosis transmembrane conductance regulator, which ends in D-T-R-L. Because the preferred binding motif of the first PDZ domain of the NHERF family of proteins is found at the C termini of a variety of intracellular proteins, NHERF and NHERF-2 may be multifunctional adaptor proteins involved in many previously unsuspected aspects of intracellular signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

G protein-coupled receptor activation leads to the membrane recruitment and activation of G protein-coupled receptor kinases, which phosphorylate receptors and lead to their inactivation. We have identified a novel G protein-coupled receptor kinase-interacting protein, GIT1, that is a GTPase-activating protein (GAP) for the ADP ribosylation factor (ARF) family of small GTP-binding proteins. Overexpression of GIT1 leads to reduced beta2-adrenergic receptor signaling and increased receptor phosphorylation, which result from reduced receptor internalization and resensitization. These cellular effects of GIT1 require its intact ARF GAP activity and do not reflect regulation of GRK kinase activity. These results suggest an essential role for ARF proteins in regulating beta2-adrenergic receptor endocytosis. Moreover, they provide a mechanism for integration of receptor activation and endocytosis through regulation of ARF protein activation by GRK-mediated recruitment of the GIT1 ARF GAP to the plasma membrane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activation of the Cyclin B/Cdc2 kinase complex triggers entry into mitosis in all eukaryotic cells. Cyclin B1 localization changes dramatically during the cell cycle, precipitously transiting from the cytoplasm to the nucleus at the beginning of mitosis. Presumably, this relocalization promotes the phosphorylation of nuclear targets critical for chromatin condensation and nuclear envelope breakdown. We show here that the previously characterized cytoplasmic retention sequence of Cyclin B1, responsible for its interphase cytoplasmic localization, is actually an autonomous nuclear export sequence, capable of directing nuclear export of a heterologous protein, and able to bind specifically to the recently identified export mediator, CRM1. We propose that the observed cytoplasmic localization of Cyclin B1 during interphase reflects the equilibrium between ongoing nuclear import and rapid CRM1-mediated export. In support of this hypothesis, we found that treatment of cells with leptomycin B, which disrupted Cyclin B1-CRM1 interactions, led to a marked nuclear accumulation of Cyclin B1. In mitosis, Cyclin B1 undergoes phosphorylation at several sites, a subset of which have been proposed to play a role in Cyclin B1 accumulation in the nucleus. Both CRM1 binding and the ability to direct nuclear export were affected by mutation of these phosphorylation sites; thus, we propose that Cyclin B1 phosphorylation at the G2/M transition prevents its interaction with CRM1, thereby reducing nuclear export and facilitating nuclear accumulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial outer membrane vesicles (OMVs) are spherical buds of the outer membrane (OM) containing periplasmic lumenal components. OMVs have been demonstrated to play a critical part in the transmission of virulence factors, immunologically active compounds, and bacterial survival, however vesiculation also appears to be a ubiquitous physiological process for Gram-negative bacteria. Despite their characterized biological roles, especially for pathogens, very little is known about their importance for the originating organism as well as regulation and mechanism of production. Only when we have established their biogenesis can we fully uncover their roles in pathogenesis and bacterial physiology. The overall goal of this research was to characterize bacterial mutants which display altered vesiculation phenotypes using genetic and biochemical techniques, and thereby begin to elucidate the mechanism of vesicle production and regulation. One part of this work elucidated a synthetic genetic growth defect for a strain with reduced OMV production (ΔnlpA, inner membrane lipoprotein with a minor role in methionine transport) and envelope stress (ΔdegP, dual function periplasmic chaperone/ protease responsible for managing proteinaceous waste). This research showed that the growth defect of ΔnlpAΔdegP correlated with reduced OMV production with respect to the hyprevesiculator ΔdegP and the accumulation of protein in the periplasm and DegP substrates in the lumen of OMVs. We further demonstrated that OMVs do not solely act as a stress response pathway to rid the periplasm of otherwise damaging misfolded protein but also of accumulated peptidoglycan (PG) fragments and lipopolysaccharide (LPS), elucidating OMVs as a general stress response pathway critical for bacterial well-being. The second part of this work, focused on the role of PG structure, turnover and covalent crosslinks to the OM in vesiculation. We established a direct link between PG degradation and vesiculation: Mutations in the OM lipoprotein nlpI had been previously established as a very strong hypervesiculation phenotype. In the literature NlpI had been associated with another OM lipoprotein, Spr that was recently identified as a PG hydrolase. The data presented here suggest that NlpI acts as a negative regulator of Spr and that the ΔnlpI hypervesiculation phenotype is a result of rampantly degraded PG by Spr. Additionally, we found that changes in PG structure and turnover correlate with altered vesiculation levels, as well as non-canonical D-amino acids, which are secreted by numerous bacteria on the onset of stationary phase, being a natural factor to increase OMV production. Furthermore, we discovered an inverse relationship between the concentration of Lpp-mediated, covalent crosslinks and the level of OMV production under conditions of modulated PG metabolism and structure. In contrast, situations that lead to periplasmic accumulation (protein, PG fragments, and LPS) and consequent hypervesiculation the overall OM-PG crosslink concentration appears to be unchanged. Form this work, we conclude that multiple pathways lead to OMV production: Lpp concentration-dependent and bulk driven, Lpp concentration-independent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The humoral immune system plays a critical role in the clearance of numerous pathogens. In the setting of HIV-1 infection, the virus infects, integrates its genome into the host's cells, replicates, and establishes a reservoir of virus-infected cells. The initial antibody response to HIV-1 infection is targeted to non-neutralizing epitopes on HIV-1 Env gp41, and when a neutralizing response does develop months after transmission, it is specific for the autologous founder virus and the virus escapes rapidly. After continuous waves of antibody mediated neutralization and viral escape, a small subset of infected individuals eventually develop broad and potent heterologous neutralizing antibodies years after infection. In this dissertation, I have studied the ontogeny of mucosal and systemic antibody responses to HIV-1 infection by means of three distinct aims: 1. Determine the origin of the initial antibody response to HIV-1 infection. 2. Characterize the role of restricted VH and VL gene segment usage in shaping the antibody response to HIV-1 infection. 3. Determine the role of persistence of B cell clonal lineages in shaping the mutation frequencies of HIV-1 reactive antibodies.

After the introduction (Chapter 1) and methods (Chapter 2), Chapter 3 of this dissertation describes a study of the antibody response of terminal ileum B cells to HIV-1 envelope (Env) in early and chronic HIV-1 infection and provides evidence for the role of environmental antigens in shaping the repertoire of B cells that respond to HIV-1 infection. Previous work by Liao et al. demonstrated that the initial plasma cell response in the blood to acute HIV-1 infection is to gp41 and is derived from a polyreactive memory B cell pool. Many of these antibodies cross-reacted with commensal bacteria, Therefore, in Chapter 3, the relationship of intestinal B cell reactivity with commensal bacteria to HIV-1 infection-induced antibody response was probed using single B cell sorting, reverse transcription and nested polymerase chain reaction (RT- PCR) methods, and recombinant antibody technology. The dominant B cell response in the terminal ileum was to HIV-1 envelope (Env) gp41, and 82% of gp41- reactive antibodies cross-reacted with commensal bacteria whole cell lysates. Pyrosequencing of blood B cells revealed HIV-1 antibody clonal lineages shared between ileum and blood. Mutated IgG antibodies cross-reactive with both Env gp41 and commensal bacteria could also be isolated from the terminal ileum of HIV-1 uninfected individuals. Thus, the antibody response to HIV-1 can be shaped by intestinal B cells stimulated by commensal bacteria prior to HIV-1 infection to develop a pre-infection pool of memory B cells cross-reactive with HIV-1 gp41.

Chapter 4 details the study of restricted VH and VL gene segment usage for gp41 and gp120 antibody induction following acute HIV-1 infection; mutations in gp41 lead to virus enhanced neutralization sensitivity. The B cell repertoire of antibodies induced in a HIV-1 infected African individual, CAP206, who developed broadly neutralizing antibodies (bnAbs) directed to the HIV-1 envelope gp41 membrane proximal external region (MPER), is characterized. Understanding the selection of virus mutants by neutralizing antibodies is critical to understanding the role of antibodies in control of HIV-1 replication and prevention from HIV-1 infection. Previously, an MPER neutralizing antibody, CAP206-CH12, with the binding footprint identical to that of MPER broadly neutralizing antibody 4E10, that like 4E10 utilized the VH1-69 and VK3-20 variable gene segments was isolated from this individual (Morris et al., 2011). Using single B cell sorting, RT- PCR methods, and recombinant antibody technology, Chapter 4 describes the isolation of a VH1-69, Vk3-20 glycan-dependent clonal lineage from CAP206, targeted to gp120, that has the property of neutralizing a neutralization sensitive CAP206 transmitted/founder (T/F) and heterologous viruses with mutations at amino acids 680 or 681 in the MPER 4E10/CH12 binding site. These data demonstrate sites within the MPER bnAb epitope (aa 680-681) in which mutations can be selected that lead to viruses with enhanced sensitivity to autologous and heterologous neutralizing antibodies.

In Chapter 5, I have completed a comparison of evolution of B cell clonal lineages in two HIV-1 infected individuals who have a predominant VH1-69 response to HIV-1 infection--one who produces broadly neutralizing MPER-reactive mAbs and one who does not. Autologous neutralization in the plasma takes ~12 weeks to develop (Gray et al., 2007; Tomaras et al., 2008b). Only a small subset of HIV-1 infected individuals develops high plasma levels of broad and potent heterologous neutralization, and when it does occur, it typically takes 3-4 years to develop (Euler et al., 2010; Gray et al., 2007; 2011; Tomaras et al., 2011). The HIV-1 bnAbs that have been isolated to date have a number of unusual characteristics including, autoreactivity and high levels of somatic hypermutations, which are typically tightly regulated by immune control mechanisms (Haynes et al., 2005; 2012b; Kwong and Mascola, 2012; Scheid et al., 2009a). The VH mutation frequencies of bnAbs average ~15% but have been shown to be as high as 32% (reviewed in Mascola and Haynes, 2013; Kwong and Mascola, 2012). The high frequency of somatic hypermutations suggests that the B cell clonal lineages that eventually produce bnAbs undergo high-levels of affinity maturation, implying prolonged germinal center (GC) reactions and high levels of T cell help. To study the duration of HIV-1- reactive B cell clonal persistence, HIV-1 reactive and non HIV-1- reactive B cell clonal lineages were isolated from an HIV-1 infected individual that produces bnAbs, CAP206, and an HIV-1 infected individual who does not produce bnAbs, 004-0. Single B cell sorting, RT-PCR and recombinant antibody technology was used to isolate and produce monoclonal antibodies from multiple time points from each individual. B cell sequences clonally related to mAbs isolated by single cell PCR were identified within pyrosequences of longitudinal samples of these two individuals. Both individuals produced long-lived B cell clones that persisted from 0-232 weeks in CAP206, and 0-238 weeks in 004-0. The average length of persistence of clones containing members isolated from two separate time points was 91.5 weeks both individuals. Examples of the continued evolution of clonal lineages were observed in both the bnAb and non-bnAb individual. These data indicated that the ability to generate persistent and evolving B cell clonal lineages occurs in both bnAb and non-bnAb individuals, suggesting that some alternative host or viral factor is critical for the generation of highly mutated broadly neutralizing antibodies.

Together the studies described in Chapter 3-5 show that multiple factors influence the antibody response to HIV-1 infection. The initial antibody response to HIV-1 Env gp41 can be shaped by a B cell response to intestinal commensal bacteria prior to HIV-1 infection. VH and VL gene segment restriction can impact the B cell response to multiple HIV-1 antigens, and virus escape mutations in the MPER can confer enhanced neutralization sensitivity to autologous and heterologous antibodies. Finally, the ability to generate long-lived HIV-1 clonal lineages in and of itself does not confer on the host the ability to produce bnAbs.