16 resultados para Knee.
Resumo:
Interleukin-1 beta (IL1β) is a proinflammatory cytokine that mediates arthritic pathologies. Our objectives were to evaluate pain and limb dysfunction resulting from IL1β over-expression in the rat knee and to investigate the ability of local IL1 receptor antagonist (IL1Ra) delivery to reverse-associated pathology. IL1β over-expression was induced in the right knees of 30 Wistar rats via intra-articular injection of rat fibroblasts retrovirally infected with human IL1β cDNA. A subset of animals received a 30 µl intra-articular injection of saline or human IL1Ra on day 1 after cell delivery (0.65 µg/µl hIL1Ra, n = 7 per group). Joint swelling, gait, and sensitivity were investigated over 1 week. On day 8, animals were sacrificed and joints were collected for histological evaluation. Joint inflammation and elevated levels of endogenous IL1β were observed in knees receiving IL1β-infected fibroblasts. Asymmetric gaits favoring the affected limb and heightened mechanical sensitivity (allodynia) reflected a unilateral pathology. Histopathology revealed cartilage loss on the femoral groove and condyle of affected joints. Intra-articular IL1Ra injection failed to restore gait and sensitivity to preoperative levels and did not reduce cartilage degeneration observed in histopathology. Joint swelling and degeneration subsequent to IL1β over-expression is associated limb hypersensitivity and gait compensation. Intra-articular IL1Ra delivery did not result in marked improvement for this model; this may be driven by rapid clearance of administered IL1Ra from the joint space. These results motivate work to further investigate the behavioral consequences of monoarticular arthritis and sustained release drug delivery strategies for the joint space.
Resumo:
BACKGROUND: Anterior cruciate ligament (ACL) reconstruction is associated with a high incidence of second tears (graft tears and contralateral ACL tears). These secondary tears have been attributed to asymmetrical lower extremity mechanics. Knee bracing is one potential intervention that can be used during rehabilitation that has the potential to normalize lower extremity asymmetry; however, little is known about the effect of bracing on movement asymmetry in patients following ACL reconstruction. HYPOTHESIS: Wearing a knee brace would increase knee joint flexion and joint symmetry. It was also expected that the joint mechanics would become more symmetrical in the braced condition. OBJECTIVE: To examine how knee bracing affects knee joint function and symmetry over the course of rehabilitation in patients 6 months following ACL reconstruction. STUDY DESIGN: Controlled laboratory study. LEVEL OF EVIDENCE: Level 3. METHODS: Twenty-three adolescent patients rehabilitating from ACL reconstruction surgery were recruited for the study. The subjects all underwent a motion analysis assessment during a stop-jump activity with and without a functional knee brace on the surgical side that resisted extension for 6 months following the ACL reconstruction surgery. Statistical analysis utilized a 2 × 2 (limb × brace) analysis of variance with a significant alpha level of 0.05. RESULTS: Subjects had increased knee flexion on the surgical side when they were braced. The brace condition increased knee flexion velocity, decreased the initial knee flexion angle, and increased the ground reaction force and knee extension moment on both limbs. Side-to-side asymmetry was present across conditions for the vertical ground reaction force and knee extension moment. CONCLUSION: Wearing a knee brace appears to increase lower extremity compliance and promotes normalized loading on the surgical side. CLINICAL RELEVANCE: Knee extension constraint bracing in postoperative ACL patients may improve symmetry of lower extremity mechanics, which is potentially beneficial in progressing rehabilitation and reducing the incidence of second ACL tears.
Resumo:
OBJECTIVE: Pathological gaits have been shown to limit transfer between potential (PE) and kinetic (KE) energy during walking, which can increase locomotor costs. The purpose of this study was to examine whether energy exchange would be limited in people with knee osteoarthritis (OA). METHODS: Ground reaction forces during walking were collected from 93 subjects with symptomatic knee OA (self-selected and fast speeds) and 13 healthy controls (self-selected speed) and used to calculate their center of mass (COM) movements, PE and KE relationships, and energy recovery during a stride. Correlations and linear regressions examined the impact of energy fluctuation phase and amplitude, walking velocity, body mass, self-reported pain, and radiographic severity on recovery. Paired t-tests were run to compare energy recovery between cohorts. RESULTS: Symptomatic knee OA subjects displayed lower energetic recovery during self-selected walking speeds than healthy controls (P = 0.0018). PE and KE phase relationships explained the majority (66%) of variance in recovery. Recovery had a complex relationship with velocity and its change across speeds was significantly influenced by the self-selected walking speed of each subject. Neither radiographic OA scores nor subject self-reported measures demonstrated any relationship with energy recovery. CONCLUSIONS: Knee OA reduces effective exchange of PE and KE, potentially increasing the muscular work required to control movements of the COM. Gait retraining may return subjects to more normal patterns of energy exchange and allow them to reduce fatigue.
Resumo:
Asymmetries in sagittal plane knee kinetics have been identified as a risk factor for anterior cruciate ligament (ACL) re-injury. Clinical tools are needed to identify the asymmetries. This study examined the relationships between knee kinetic asymmetries and ground reaction force (GRF) asymmetries during athletic tasks in adolescent patients following ACL reconstruction (ACL-R). Kinematic and GRF data were collected during a stop-jump task and a side-cutting task for 23 patients. Asymmetry indices between the surgical and non-surgical limbs were calculated for GRF and knee kinetic variables. For the stop-jump task, knee kinetics asymmetry indices were correlated with all GRF asymmetry indices (P < 0.05), except for loading rate. Vertical GRF impulse asymmetry index predicted peak knee moment, average knee moment, and knee work (R(2) ≥ 0.78, P < 0.01) asymmetry indices. For the side-cutting tasks, knee kinetic asymmetry indices were correlated with the peak propulsion vertical GRF and vertical GRF impulse asymmetry indices (P < 0.05). Vertical GRF impulse asymmetry index predicted peak knee moment, average knee moment, and knee work (R(2) ≥ 0.55, P < 0.01) asymmetry indices. The vertical GRF asymmetries may be a viable surrogate for knee kinetic asymmetries and therefore may assist in optimizing rehabilitation outcomes and minimizing re-injury rates.
Resumo:
The purpose of this study was to identify the preoperative predictors of hospital length of stay after primary total knee arthroplasty in a patient population reflecting current trends toward shorter hospitalization and using readily obtainable factors that do not require scoring systems. A single-center, multi-surgeon retrospective chart review of two hundred and sixty consecutive patients who underwent primary total knee arthroplasty was performed. The mean length of stay was 3.0 days. Among the different variables studied, increasing comorbidities, lack of adequate assistance at home, and bilateral surgery were the only multivariable significant predictors of longer length of stay. The study was adequately powered for statistical analyses and the concordance index of the multivariable logistic regression model was 0.815.
Resumo:
BACKGROUND: Controversies exist regarding the indications for unicompartmental knee arthroplasty. The objective of this study is to report the mid-term results and examine predictors of failure in a metal-backed unicompartmental knee arthroplasty design. METHODS: At a mean follow-up of 60 months, 80 medial unicompartmental knee arthroplasties (68 patients) were evaluated. Implant survivorship was analyzed using Kaplan-Meier method. The Knee Society objective and functional scores and radiographic characteristics were compared before surgery and at final follow-up. A Cox proportional hazard model was used to examine the association of patient's age, gender, obesity (body mass index > 30 kg/m2), diagnosis, Knee Society scores and patella arthrosis with failure. RESULTS: There were 9 failures during the follow up. The mean Knee Society objective and functional scores were respectively 49 and 48 points preoperatively and 95 and 92 points postoperatively. The survival rate was 92% at 5 years and 84% at 10 years. The mean age was younger in the failure group than the non-failure group (p < 0.01). However, none of the factors assessed was independently associated with failure based on the results from the Cox proportional hazard model. CONCLUSION: Gender, pre-operative diagnosis, preoperative objective and functional scores and patellar osteophytes were not independent predictors of failure of unicompartmental knee implants, although high body mass index trended toward significance. The findings suggest that the standard criteria for UKA may be expanded without compromising the outcomes, although caution may be warranted in patients with very high body mass index pending additional data to confirm our results. LEVEL OF EVIDENCE: IV.
Resumo:
BACKGROUND: Despite the high prevalence and global impact of knee osteoarthritis (KOA), current treatments are palliative. No disease modifying anti-osteoarthritic drug (DMOAD) has been approved. We recently demonstrated significant involvement of uric acid and activation of the innate immune response in osteoarthritis (OA) pathology and progression, suggesting that traditional gout therapy may be beneficial for OA. We therefore assess colchicine, an existing commercially available agent for gout, for a new therapeutic application in KOA. METHODS/DESIGN: COLKOA is a double-blind, placebo-controlled, randomized trial comparing a 16-week treatment with standard daily dose oral colchicine to placebo for KOA. A total of 120 participants with symptomatic KOA will be recruited from a single center in Singapore. The primary end point is 30% improvement in total Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score at week 16. Secondary end points include improvement in pain, physical function, and quality of life and change in serum, urine and synovial fluid biomarkers of cartilage metabolism and inflammation. A magnetic resonance imaging (MRI) substudy will be conducted in 20 participants to evaluate change in synovitis. Logistic regression will be used to compare changes between groups in an intention-to-treat analysis. DISCUSSION: The COLKOA trial is designed to evaluate whether commercially available colchicine is effective for improving signs and symptoms of KOA, and reducing synovial fluid, serum and urine inflammatory and biochemical joint degradation biomarkers. These biomarkers should provide insights into the underlying mechanism of therapeutic response. This trial will potentially provide data to support a new treatment option for KOA. TRIAL REGISTRATION: The trial has been registered at clinicaltrials.gov as NCT02176460 . Date of registration: 26 June 2014.
Resumo:
OBJECTIVES: To assess the prevalence of musculoskeletal symptoms and their association with sociodemographic risk factors among female garment factory workers in Sri Lanka. METHODS: 1058 randomly selected female garment factory workers employed in the free trade zone of Kogalla, Sri Lanka were recruited to complete two interviewer-administered questionnaires assessing musculoskeletal symptoms and health behaviors. DISCUSSION: Musculoskeletal complaints among female garment workers in the FTZ of Kogalla are less common than expected. Sociocultural factors may have resulted in underreporting and similarly contribute to the low rates of healthcare utilization by these women. RESULTS: 164 (15.5%) of workers reported musculoskeletal symptoms occurring more than 3 times or lasting a week or more during the previous 12-month period. Back (57.3%) and knee (31.7%) were the most common sites of pain. Although most symptomatic women reported that their problems interfered with work and leisure activities, very few missed work as a result of their pain. Prevalence correlated positively with increased age and industry tenure of less than 12 months. Job type, body mass index, and education were not significant predictors of musculoskeletal symptoms.
Resumo:
BACKGROUND: The majority of total ankle arthroplasty (TAA) systems use extramedullary alignment guides for tibial component placement. However, at least 1 system offers intramedullary referencing. In total knee arthroplasty, studies suggest that tibial component placement is more accurate with intramedullary referencing. The purpose of this study was to compare the accuracy of extramedullary referencing with intramedullary referencing for tibial component placement in total ankle arthroplasty. METHODS: The coronal and sagittal tibial component alignment was evaluated on the postoperative weight-bearing anteroposterior (AP) and lateral radiographs of 236 consecutive fixed-bearing TAAs. Radiographs were measured blindly by 2 investigators. The postoperative alignment of the prosthesis was compared with the surgeon's intended alignment in both planes. The accuracy of tibial component alignment was compared between the extramedullary and intramedullary referencing techniques using unpaired t tests. Interrater and intrarater reliabilities were assessed with intraclass correlation coefficients (ICCs). RESULTS: Eighty-three tibial components placed with an extramedullary referencing technique were compared with 153 implants placed with an intramedullary referencing technique. The accuracy of the extramedullary referencing was within a mean of 1.5 ± 1.4 degrees and 4.1 ± 2.9 degrees in the coronal and sagittal planes, respectively. The accuracy of intramedullary referencing was within a mean of 1.4 ± 1.1 degrees and 2.5 ± 1.8 degrees in the coronal and sagittal planes, respectively. There was a significant difference (P < .001) between the 2 techniques with respect to the sagittal plane alignment. Interrater ICCs for coronal and sagittal alignment were high (0.81 and 0.94, respectively). Intrarater ICCs for coronal and sagittal alignment were high for both investigators. CONCLUSIONS: Initial sagittal plane tibial component alignment was notably more accurate when intramedullary referencing was used. Further studies are needed to determine the effect of this difference on clinical outcomes and long-term survivability of the implants. LEVEL OF EVIDENCE: Level III, retrospective comparative study.
Resumo:
The meniscus plays a critical biomechanical role in the knee, providing load support, joint stability, and congruity. Importantly, growing evidence indicates that the mechanobiologic response of meniscal cells plays a critical role in the physiologic, pathologic, and repair responses of the meniscus. Here we review experimental and theoretical studies that have begun to directly measure the biomechanical effects of joint loading on the meniscus under physiologic and pathologic conditions, showing that the menisci are exposed to high contact stresses, resulting in a complex and nonuniform stress-strain environment within the tissue. By combining microscale measurements of the mechanical properties of meniscal cells and their pericellular and extracellular matrix regions, theoretical and experimental models indicate that the cells in the meniscus are exposed to a complex and inhomogeneous environment of stress, strain, fluid pressure, fluid flow, and a variety of physicochemical factors. Studies across a range of culture systems from isolated cells to tissues have revealed that the biological response of meniscal cells is directly influenced by physical factors, such as tension, compression, and hydrostatic pressure. In addition, these studies have provided new insights into the mechanotransduction mechanisms by which physical signals are converted into metabolic or pro/anti-inflammatory responses. Taken together, these in vivo and in vitro studies show that mechanical factors play an important role in the health, degeneration, and regeneration of the meniscus. A more thorough understanding of the mechanobiologic responses of the meniscus will hopefully lead to therapeutic approaches to prevent degeneration and enhance repair of the meniscus.
Resumo:
BACKGROUND: Diagnostic imaging represents the fastest growing segment of costs in the US health system. This study investigated the cost-effectiveness of alternative diagnostic approaches to meniscus tears of the knee, a highly prevalent disease that traditionally relies on MRI as part of the diagnostic strategy. PURPOSE: To identify the most efficient strategy for the diagnosis of meniscus tears. STUDY DESIGN: Economic and decision analysis; Level of evidence, 1. METHODS: A simple-decision model run as a cost-utility analysis was constructed to assess the value added by MRI in various combinations with patient history and physical examination (H&P). The model examined traumatic and degenerative tears in 2 distinct settings: primary care and orthopaedic sports medicine clinic. Strategies were compared using the incremental cost-effectiveness ratio (ICER). RESULTS: In both practice settings, H&P alone was widely preferred for degenerative meniscus tears. Performing MRI to confirm a positive H&P was preferred for traumatic tears in both practice settings, with a willingness to pay of less than US$50,000 per quality-adjusted life-year. Performing an MRI for all patients was not preferred in any reasonable clinical scenario. The prevalence of a meniscus tear in a clinician's patient population was influential. For traumatic tears, MRI to confirm a positive H&P was preferred when prevalence was less than 46.7%, with H&P preferred above that. For degenerative tears, H&P was preferred until the prevalence reaches 74.2%, and then MRI to confirm a negative was the preferred strategy. In both settings, MRI to confirm positive physical examination led to more than a 10-fold lower rate of unnecessary surgeries than did any other strategy, while MRI to confirm negative physical examination led to a 2.08 and 2.26 higher rate than H&P alone in primary care and orthopaedic clinics, respectively. CONCLUSION: For all practitioners, H&P is the preferred strategy for the suspected degenerative meniscus tear. An MRI to confirm a positive H&P is preferred for traumatic tears for all practitioners. Consideration should be given to implementing alternative diagnostic strategies as well as enhancing provider education in physical examination skills to improve the reliability of H&P as a diagnostic test. CLINICAL RELEVANCE: Alternative diagnostic strategies that do not include the use of MRI may result in decreased health care costs without harm to the patient and could possibly reduce unnecessary procedures.
Resumo:
The purpose of this study was to identify preoperative predictors of discharge destination after total joint arthroplasty. A retrospective study of three hundred and seventy-two consecutive patients who underwent primary total hip and knee arthroplasty was performed. The mean length of stay was 2.9 days and 29.0% of patients were discharged to extended care facilities. Age, caregiver support at home, and patient expectation of discharge destination were the only significant multivariable predictors regardless of the type of surgery (total knee versus total hip arthroplasty). Among those variables, patient expectation was the most important predictor (P < 0.001; OR 169.53). The study was adequately powered to analyze the variables in the multivariable logistic regression model, which had a high concordance index of 0.969.
Resumo:
Lower Extremity Joint Arthroplasty (LEJA) surgery is an effective way to alleviate painful osteoarthritis. Unfortunately, these surgeries do not normalize the loading asymmetry during the single leg stance phase of gait. Therefore, we examined single leg balance in 234 TJA patients (75 hips, 65 knees, 94 ankles) approximately 12 months following surgery. Patients passed if they maintained single leg balance for 10s with their eyes open. Patients one year following total hip arthroplasty (THA-63%) and total knee arthroplasty (TKA-69%) had similar pass rates compared to a total ankle arthroplasty (TAA-9%). Patients following THA and TKA exhibit better unilateral balance in comparison with TAA patients. It may be beneficial to include a rigorous proprioception and balance training program in TAA patients to optimize functional outcomes.
Resumo:
Articular cartilage consists of chondrocytes and two major components, a collagen-rich framework and highly abundant proteoglycans. Most prior studies defining the zonal distribution of cartilage have extracted proteins with guanidine-HCl. However, an unextracted collagen-rich residual is left after extraction. In addition, the high abundance of anionic polysaccharide molecules extracted from cartilage adversely affects the chromatographic separation. In this study, we established a method for removing chondrocytes from cartilage sections with minimal extracellular matrix protein loss. The addition of surfactant to guanidine-HCl extraction buffer improved protein solubility. Ultrafiltration removed interference from polysaccharides and salts. Almost four-times more collagen peptides were extracted by the in situ trypsin digestion method. However, as expected, proteoglycans were more abundant within the guanidine-HCl extraction. These different methods were used to extract cartilage sections from different cartilage layers (superficial, intermediate, and deep), joint types (knee and hip), and disease states (healthy and osteoarthritic), and the extractions were evaluated by quantitative and qualitative proteomic analyses. The results of this study led to the identifications of the potential biomarkers of osteoarthritis (OA), OA progression, and the joint specific biomarkers.