17 resultados para Diffusion mechanisms of strategy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: To our knowledge, the antiviral activity of pegylated interferon alfa-2a has not been studied in participants with untreated human immunodeficiency virus type 1 (HIV-1) infection but without chronic hepatitis C virus (HCV) infection. METHODS: Untreated HIV-1-infected volunteers without HCV infection received 180 microg of pegylated interferon alfa-2a weekly for 12 weeks. Changes in plasma HIV-1 RNA load, CD4(+) T cell counts, pharmacokinetics, pharmacodynamic measurements of 2',5'-oligoadenylate synthetase (OAS) activity, and induction levels of interferon-inducible genes (IFIGs) were measured. Nonparametric statistical analysis was performed. RESULTS: Eleven participants completed 12 weeks of therapy. The median plasma viral load decrease and change in CD4(+) T cell counts at week 12 were 0.61 log(10) copies/mL (90% confidence interval [CI], 0.20-1.18 log(10) copies/mL) and -44 cells/microL (90% CI, -95 to 85 cells/microL), respectively. There was no correlation between plasma viral load decreases and concurrent pegylated interferon plasma concentrations. However, participants with larger increases in OAS level exhibited greater decreases in plasma viral load at weeks 1 and 2 (r = -0.75 [90% CI, -0.93 to -0.28] and r = -0.61 [90% CI, -0.87 to -0.09], respectively; estimated Spearman rank correlation). Participants with higher baseline IFIG levels had smaller week 12 decreases in plasma viral load (0.66 log(10) copies/mL [90% CI, 0.06-0.91 log(10) copies/mL]), whereas those with larger IFIG induction levels exhibited larger decreases in plasma viral load (-0.74 log(10) copies/mL [90% CI, -0.93 to -0.21 log(10) copies/mL]). CONCLUSION: Pegylated interferon alfa-2a was well tolerated and exhibited statistically significant anti-HIV-1 activity in HIV-1-monoinfected patients. The anti-HIV-1 effect correlated with OAS protein levels (weeks 1 and 2) and IFIG induction levels (week 12) but not with pegylated interferon concentrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In addition to modulating the function and stability of cellular mRNAs, microRNAs can profoundly affect the life cycles of viruses bearing sequence complementary targets, a finding recently exploited to ameliorate toxicities of vaccines and oncolytic viruses. To elucidate the mechanisms underlying microRNA-mediated antiviral activity, we modified the 3' untranslated region (3'UTR) of Coxsackievirus A21 to incorporate targets with varying degrees of homology to endogenous microRNAs. We show that microRNAs can interrupt the picornavirus life-cycle at multiple levels, including catalytic degradation of the viral RNA genome, suppression of cap-independent mRNA translation, and interference with genome encapsidation. In addition, we have examined the extent to which endogenous microRNAs can suppress viral replication in vivo and how viruses can overcome this inhibition by microRNA saturation in mouse cancer models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although people do not normally try to remember associations between faces and physical contexts, these associations are established automatically, as indicated by the difficulty of recognizing familiar faces in different contexts ("butcher-on-the-bus" phenomenon). The present fMRI study investigated the automatic binding of faces and scenes. In the face-face (F-F) condition, faces were presented alone during both encoding and retrieval, whereas in the face/scene-face (FS-F) condition, they were presented overlaid on scenes during encoding but alone during retrieval (context change). Although participants were instructed to focus only on the faces during both encoding and retrieval, recognition performance was worse in the FS-F than in the F-F condition ("context shift decrement" [CSD]), confirming automatic face-scene binding during encoding. This binding was mediated by the hippocampus as indicated by greater subsequent memory effects (remembered > forgotten) in this region for the FS-F than the F-F condition. Scene memory was mediated by right parahippocampal cortex, which was reactivated during successful retrieval when the faces were associated with a scene during encoding (FS-F condition). Analyses using the CSD as a regressor yielded a clear hemispheric asymmetry in medial temporal lobe activity during encoding: Left hippocampal and parahippocampal activity was associated with a smaller CSD, indicating more flexible memory representations immune to context changes, whereas right hippocampal/rhinal activity was associated with a larger CSD, indicating less flexible representations sensitive to context change. Taken together, the results clarify the neural mechanisms of context effects on face recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The brain is a highly adaptable organ that is capable of converting sensory information into changes in neuronal function. This plasticity allows behavior to be accommodated to the environment, providing an important evolutionary advantage. Neurons convert environmental stimuli into long-lasting changes in their physiology in part through the synaptic activity-regulated transcription of new gene products. Since the neurotransmitter-dependent regulation of Fos transcription was first discovered nearly 25 years ago, a wealth of studies have enriched our understanding of the molecular pathways that mediate activity-regulated changes in gene transcription. These findings show that a broad range of signaling pathways and transcriptional regulators can be engaged by neuronal activity to sculpt complex programs of stimulus-regulated gene transcription. However, the shear scope of the transcriptional pathways engaged by neuronal activity raises the question of how specificity in the nature of the transcriptional response is achieved in order to encode physiologically relevant responses to divergent stimuli. Here we summarize the general paradigms by which neuronal activity regulates transcription while focusing on the molecular mechanisms that confer differential stimulus-, cell-type-, and developmental-specificity upon activity-regulated programs of neuronal gene transcription. In addition, we preview some of the new technologies that will advance our future understanding of the mechanisms and consequences of activity-regulated gene transcription in the brain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Morphine induces antinociception by activating mu opioid receptors (muORs) in spinal and supraspinal regions of the CNS. (Beta)arrestin-2 (beta)arr2), a G-protein-coupled receptor-regulating protein, regulates the muOR in vivo. We have shown previously that mice lacking (beta)arr2 experience enhanced morphine-induced analgesia and do not become tolerant to morphine as determined in the hot-plate test, a paradigm that primarily assesses supraspinal pain responsiveness. To determine the general applicability of the (beta)arr2-muOR interaction in other neuronal systems, we have, in the present study, tested (beta)arr2 knock-out ((beta)arr2-KO) mice using the warm water tail-immersion paradigm, which primarily assesses spinal reflexes to painful thermal stimuli. In this test, the (beta)arr2-KO mice have greater basal nociceptive thresholds and markedly enhanced sensitivity to morphine. Interestingly, however, after a delayed onset, they do ultimately develop morphine tolerance, although to a lesser degree than the wild-type (WT) controls. In the (beta)arr2-KO but not WT mice, morphine tolerance can be completely reversed with a low dose of the classical protein kinase C (PKC) inhibitor chelerythrine. These findings provide in vivo evidence that the muOR is differentially regulated in diverse regions of the CNS. Furthermore, although (beta)arr2 appears to be the most prominent and proximal determinant of muOR desensitization and morphine tolerance, in the absence of this mechanism, the contributions of a PKC-dependent regulatory system become readily apparent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The size, shape, and connectivity of water bodies (lakes, ponds, and wetlands) can have important effects on ecological communities and ecosystem processes, but how these characteristics are influenced by land use and land cover change over broad spatial scales is not known. Intensive alteration of water bodies during urban development, including construction, burial, drainage, and reshaping, may select for certain morphometric characteristics and influence the types of water bodies present in cities. We used a database of over one million water bodies in 100 cities across the conterminous United States to compare the size distributions, connectivity (as intersection with surface flow lines), and shape (as measured by shoreline development factor) of water bodies in different land cover classes. Water bodies in all urban land covers were dominated by lakes and ponds, while reservoirs and wetlands comprised only a small fraction of the sample. In urban land covers, as compared to surrounding undeveloped land, water body size distributions converged on moderate sizes, shapes toward less tortuous shorelines, and the number and area of water bodies that intersected surface flow lines (i.e., streams and rivers) decreased. Potential mechanisms responsible for changing the characteristics of urban water bodies include: preferential removal, physical reshaping or addition of water bodies, and selection of locations for development. The relative contributions of each mechanism likely change as cities grow. The larger size and reduced surface connectivity of urban water bodies may affect the role of internal dynamics and sensitivity to catchment processes. More broadly, these results illustrate the complex nature of urban watersheds and highlight the need to develop a conceptual framework for urban water bodies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CD8+ T cells are associated with long term control of virus replication to low or undetectable levels in a population of HIV+ therapy-naïve individuals known as virus controllers (VCs; <5000 RNA copies/ml and CD4+ lymphocyte counts >400 cells/µl). These subjects' ability to control viremia in the absence of therapy makes them the gold standard for the type of CD8+ T-cell response that should be induced with a vaccine. Studying the regulation of CD8+ T cells responses in these VCs provides the opportunity to discover mechanisms of durable control of HIV-1. Previous research has shown that the CD8+ T cell population in VCs is heterogeneous in its ability to inhibit virus replication and distinct T cells are responsible for virus inhibition. Further defining both the functional properties and regulation of the specific features of the select CD8+ T cells responsible for potent control of viremia the in VCs would enable better evaluation of T cell-directed vaccine strategies and may inform the design of new therapies.

Here we discuss the progress made in elucidating the features and regulation of CD8+ T cell response in virus controllers. We first detail the development of assays to quantify CD8+ T cells' ability to inhibit virus replication. This includes the use of a multi-clade HIV-1 panel which can subsequently be used as a tool for evaluation of T cell directed vaccines. We used these assays to evaluate the CD8+ response among cohorts of HIV-1 seronegative, HIV-1 acutely infected, and HIV-1 chronically infected (both VC and chronic viremic) patients. Contact and soluble CD8+ T cell virus inhibition assays (VIAs) are able to distinguish these patient groups based on the presence and magnitude of the responses. When employed in conjunction with peptide stimulation, the soluble assay reveals peptide stimulation induces CD8+ T cell responses with a prevalence of Gag p24 and Nef specificity among the virus controllers tested. Given this prevalence, we aimed to determine the gene expression profile of Gag p24-, Nef-, and unstimulated CD8+ T cells. RNA was isolated from CD8+ T-cells from two virus controllers with strong virus inhibition and one seronegative donor after a 5.5 hour stimulation period then analyzed using the Illumina Human BeadChip platform (Duke Center for Human Genome Variation). Analysis revealed that 565 (242 Nef and 323 Gag) genes were differentially expressed in CD8+ T-cells that were able to inhibit virus replication compared to those that could not. We compared the differentially expressed genes to published data sets from other CD8+ T-cell effector function experiments focusing our analysis on the most recurring genes with immunological, gene regulatory, apoptotic or unknown functions. The most commonly identified gene in these studies was TNFRSF9. Using PCR in a larger cohort of virus controllers we confirmed the up-regulation of TNFRSF9 in Gag p24 and Nef-specific CD8+ T cell mediated virus inhibition. We also observed increase in the mRNA encoding antiviral cytokines macrophage inflammatory proteins (MIP-1α, MIP-1αP, MIP-1β), interferon gamma (IFN-γ), granulocyte-macrophage colony-stimulating factor (GM-CSF), and recently identified lymphotactin (XCL1).

Our previous work suggests the CD8+ T-cell response to HIV-1 can be regulated at the level of gene regulation. Because RNA abundance is modulated by transcription of new mRNAs and decay of new and existing RNA we aimed to evaluate the net rate of transcription and mRNA decay for the cytokines we identified as differentially regulated. To estimate rate of mRNA synthesis and decay, we stimulated isolated CD8+ T-cells with Gag p24 and Nef peptides adding 4-thiouridine (4SU) during the final hour of stimulation, allowing for separation of RNA made during the final hour of stimulation. Subsequent PCR of RNA isolated from these cells, allowed us to determine how much mRNA was made for our genes of interest during the final hour which we used to calculate rate of transcription. To assess if stimulation caused a change in RNA stability, we calculated the decay rates of these mRNA over time. In Gag p24 and Nef stimulated T cells , the abundance of the mRNA of many of the cytokines examined was dependent on changes in both transcription and mRNA decay with evidence for potential differences in the regulation of mRNA between Nef and Gag specific CD8+ T cells. The results were highly reproducible in that in one subject that was measured in three independent experiments the results were concordant.

This data suggests that mRNA stability, in addition to transcription, is key in regulating the direct anti-HIV-1 function of antigen-specific memory CD8+ T cells by enabling rapid recall of anti-HIV-1 effector functions, namely the production and increased stability of antiviral cytokines. We have started to uncover the mechanisms employed by CD8+ T cell subsets with antigen-specific anti-HIV-1 activity, in turn, enhancing our ability to inhibit virus replication by informing both cure strategies and HIV-1 vaccine designs that aim to reduce transmission and can aid in blocking HIV-1 acquisition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main impetus for a mini-symposium on corticothalamic interrelationships was the recent number of studies highlighting the role of the thalamus in aspects of cognition beyond sensory processing. The thalamus contributes to a range of basic cognitive behaviors that include learning and memory, inhibitory control, decision-making, and the control of visual orienting responses. Its functions are deeply intertwined with those of the better studied cortex, although the principles governing its coordination with the cortex remain opaque, particularly in higher-level aspects of cognition. How should the thalamus be viewed in the context of the rest of the brain? Although its role extends well beyond relaying of sensory information from the periphery, the main function of many of its subdivisions does appear to be that of a relay station, transmitting neural signals primarily to the cerebral cortex from a number of brain areas. In cognition, its main contribution may thus be to coordinate signals between diverse regions of the telencephalon, including the neocortex, hippocampus, amygdala, and striatum. This central coordination is further subject to considerable extrinsic control, for example, inhibition from the basal ganglia, zona incerta, and pretectal regions, and chemical modulation from ascending neurotransmitter systems. What follows is a brief review on the role of the thalamus in aspects of cognition and behavior, focusing on a summary of the topics covered in a mini-symposium held at the Society for Neuroscience meeting, 2014.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polarization is important for the function and morphology of many different cell types. The keys regulators of polarity in eukaryotes are the Rho-family GTPases. In the budding yeast Saccharomyces cerevisiae, which must polarize in order to bud and to mate, the master regulator is the highly conserved Rho GTPase, Cdc42. During polarity establishment, active Cdc42 accumulates at a site on the plasma membrane characterizing the “front” of the cell where the bud will emerge. The orientation of polarization is guided by upstream cues that dictate the site of Cdc42 clustering. However, in the absence of upstream cues, yeast can still polarize in a random direction during symmetry breaking. Symmetry breaking suggests cells possess an autocatalytic polarization mechanism that can amplify stochastic fluctuations of polarity proteins through a positive feedback mechanism.

Two different positive feedback mechanisms have been proposed to polarize Cdc42 in budding yeast. One model posits that Cdc42 activation must be localized to a site at the plasma membrane. Another model posits that Cdc42 delivery must be localized to a particular site at the plasma membrane. Although both mechanisms could work in parallel to polarize Cdc42, it is unclear which mechanism is critical to polarity establishment. We directly tested the predictions of the two positive feedback models using genetics and live microscopy. We found that localized Cdc42 activation is necessary for polarity establishment.

While this explains how active Cdc42 localizes to a particular site at the plasma membrane, it does not address how Cdc42 concentrates at that site. Several different mechanisms have been proposed to concentrate Cdc42. The GDI can extract Cdc42 from membranes and selective mobilize GDP-Cdc42 in the cytoplasm. It was proposed that selectively mobilizing GDP-Cdc42 in combination with local activation could locally concentrate total Cdc42 at the polarity site. Although the GDI is important for rapid Cdc42 accumulation at the polarity site, it is not essential to Cdc42 concentration. It was proposed that delivery of Cdc42 by actin-mediated vesicle can act as a backup pathway to concentrate Cdc42. However, we found no evidence for an actin-dependent concentrating pathway. Live microscopy experiments reveal that prenylated proteins are not restricted to membranes, and can enter the cytoplasm. We found that the GDI-independent concentrating pathway still requires Cdc42 to exchange between the plasma membrane and the cytoplasm, which is supported by computational modeling. In the absence of the GDI, we found that Cdc42 GAP became essential for polarization. We propose that the GAP limits GTP-Cdc42 leak into the cytoplasm, which would be prohibitive to Cdc42 polarization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research examines three potential mechanisms by which bacteria can adapt to different temperatures: changes in strain-level population structure, gene regulation and particle colonization. For the first two mechanisms, I utilize bacterial strains from the Vibrionaceae family due to their ease of culturability, ubiquity in coastal environments and status as a model system for marine bacteria. I first examine vibrio seasonal dynamics in temperate, coastal water and compare the thermal performance of strains that occupy different thermal environments. Our results suggest that there are tradeoffs in adaptation to specific temperatures and that thermal specialization can occur at a very fine phylogenetic scale. The observed thermal specialization over relatively short evolutionary time-scales indicates that few genes or cellular processes may limit expansion to a different thermal niche. I then compare the genomic and transcriptional changes associated with thermal adaptation in closely-related vibrio strains under heat and cold stress. The two vibrio strains have very similar genomes and overall exhibit similar transcriptional profiles in response to temperature stress but their temperature preferences are determined by differential transcriptional responses in shared genes as well as temperature-dependent regulation of unique genes. Finally, I investigate the temporal dynamics of particle-attached and free-living bacterial community in coastal seawater and find that microhabitats exert a stronger forcing on microbial communities than environmental variability, suggesting that particle-attachment could buffer the impacts of environmental changes and particle-associated communities likely respond to the presence of distinct eukaryotes rather than commonly-measured environmental parameters. Integrating these results will offer new perspectives on the mechanisms by which bacteria respond to seasonal temperature changes as well as potential adaptations to climate change-driven warming of the surface oceans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sexual risk behavior among young adults is a serious public health concern; 50% will contract a sexually transmitted infection (STI) before the age of 25. The current study collected self-report personality and sexual history data, as well as neuroimaging, experimental behavioral (e.g., real-time hypothetical sexual decision making data), and self-report sexual arousal data from 120 heterosexual young adults ages 18-26. In addition, longitudinal changes in self-reported sexual behavior were collected from a subset (n = 70) of the participants. The primary aims of the study were (1) to predict differences in self-report sexual behavior and hypothetical sexual decision-making (in response to sexually explicit audio-visual cues) as a function of ventral striatum (VS) and amygdala activity, (2) test whether the association between sexual behavior/decision-making and brain function is moderated by gender, self-reported sexual arousal, and/or trait-level personality factors (i.e., self-control, impulsivity, and sensation seeking) and (3) to examine how the main effects of neural function and interaction effects predict sexual risk behavior over time. Our hypotheses were mostly supported across the sexual behavior and decision-making outcome variables, such that neural risk phenotypes (heightened reward-related ventral striatum activity coupled with decreased threat-related amygdala activity) were associated with greater lifetime sexual partners at baseline measured and over time (longitudinal analyses). Impulsivity moderated the relationship between neural function and self-reported number of sexual partners at baseline and follow up measures, as well as experimental condom use decision-making. Sexual arousal and sensation seeking moderated the relationship between neural function and baseline and follow up self-reports of number of sexual partners. Finally, unique gender differences were observed in the relationship between threat and reward-related neural reactivity and self-reported sexual risk behavior. The results of this study provide initial evidence for the potential role for neurobiological approaches to understanding sexual decision-making and risk behavior. With continued research, establishing biomarkers for sexual risk behavior could help inform the development of novel and more effective individually tailored sexual health prevention and intervention efforts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lungs are vital organs whose airways are lined with a continuous layer of epithelial cells. Epithelial cells in the distal most part of the lung, the alveolar space, are specialized to facilitate gas exchange. Proximal to the alveoli is the airway epithelium, which provides an essential barrier and is the first line of defense against inhaled toxicants, pollutants, and pathogens. Although the postnatal lung is a quiescent organ, it has an inherent ability to regenerate in response to injury. Proper balance between maintaining quiescence and undergoing repair is crucial, with imbalances in these processes leading to fibrosis or tumor development. Stem and progenitor cells are central to maintaining balance, given that they proliferate and renew both themselves and the various differentiated cells of the lung. However, the precise mechanisms regulating quiescence and repair in the lungs are largely unknown. In this dissertation, ionizing radiation is used as a physiologically relevant injury model to better understand the repair process of the airway epithelium. We use in vitro and in vivo mouse models to study the response of a secretory progenitor, the club cell, to various doses and qualities of ionizing radiation. Exposure to radiation found in space environments and in some types of radiotherapy caused clonal expansion of club cells specifically in the most distal branches of the airway epithelium, indicating that the progenitors residing in the terminal bronchioles are radiosensitive. This clonal expansion is due to an increase in p53-dependent apoptosis, senescence, and mitotic defects. Through the course of this work, we discovered that p53 is not only involved in radiation response, but is also a novel regulator of airway epithelial homeostasis. p53 acts in a gene dose-dependent manner to regulate the composition of airway epithelium by maintaining quiescence and regulating differentiation of club progenitor cells in the steady-state lung. The work presented in this dissertation represents an advance in our understanding of the molecular mechanisms underlying maintenance of airway epithelial progenitor cells as well as their repair following ionizing radiation exposure.