19 resultados para Circulating microrna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Since mature erythrocytes are terminally differentiated cells without nuclei and organelles, it is commonly thought that they do not contain nucleic acids. In this study, we have re-examined this issue by analyzing the transcriptome of a purified population of human mature erythrocytes from individuals with normal hemoglobin (HbAA) and homozygous sickle cell disease (HbSS). METHODS AND FINDINGS: Using a combination of microarray analysis, real-time RT-PCR and Northern blots, we found that mature erythrocytes, while lacking ribosomal and large-sized RNAs, contain abundant and diverse microRNAs. MicroRNA expression of erythrocytes was different from that of reticulocytes and leukocytes, and contributed the majority of the microRNA expression in whole blood. When we used microRNA microarrays to analyze erythrocytes from HbAA and HbSS individuals, we noted a dramatic difference in their microRNA expression pattern. We found that miR-320 played an important role for the down-regulation of its target gene, CD71 during reticulocyte terminal differentiation. Further investigation revealed that poor expression of miR-320 in HbSS cells was associated with their defective downregulation CD71 during terminal differentiation. CONCLUSIONS: In summary, we have discovered significant microRNA expression in human mature erythrocytes, which is dramatically altered in HbSS erythrocytes and their defect in terminal differentiation. Thus, the global analysis of microRNA expression in circulating erythrocytes can provide mechanistic insights into the disease phenotypes of erythrocyte diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellular therapies have recently employed the use of small RNA molecules, particularly microRNAs (miRNAs), to regulate various cellular processes that may be altered in disease states. In this study, we examined the effect of transient muscle-specific miRNA inhibition on the function of three-dimensional skeletal muscle cultures, or bioartificial muscles (BAMs). Skeletal myoblast differentiation in vitro is enhanced by inhibiting a proliferation-promoting miRNA (miR-133) expressed in muscle tissues. As assessed by functional force measurements in response to electrical stimulation at frequencies ranging from 0 to 20 Hz, peak forces exhibited by BAMs with miR-133 inhibition (anti-miR-133) were on average 20% higher than the corresponding negative control, although dynamic responses to electrical stimulation in miRNA-transfected BAMs and negative controls were similar to nontransfected controls. Immunostaining for alpha-actinin and myosin also showed more distinct striations and myofiber organization in anti-miR-133 BAMs, and fiber diameters were significantly larger in these BAMs over both the nontransfected and negative controls. Compared to the negative control, anti-miR-133 BAMs exhibited more intense nuclear staining for Mef2, a key myogenic differentiation marker. To our knowledge, this study is the first to demonstrate that miRNA mediation has functional effects on tissue-engineered constructs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In addition to modulating the function and stability of cellular mRNAs, microRNAs can profoundly affect the life cycles of viruses bearing sequence complementary targets, a finding recently exploited to ameliorate toxicities of vaccines and oncolytic viruses. To elucidate the mechanisms underlying microRNA-mediated antiviral activity, we modified the 3' untranslated region (3'UTR) of Coxsackievirus A21 to incorporate targets with varying degrees of homology to endogenous microRNAs. We show that microRNAs can interrupt the picornavirus life-cycle at multiple levels, including catalytic degradation of the viral RNA genome, suppression of cap-independent mRNA translation, and interference with genome encapsidation. In addition, we have examined the extent to which endogenous microRNAs can suppress viral replication in vivo and how viruses can overcome this inhibition by microRNA saturation in mouse cancer models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CD133 is one of the most common stem cell markers, and functional single nucleotide polymorphisms (SNPs) of CD133 may modulate its gene functions and thus cancer risk and patient survival. We hypothesized that potentially functional CD133 SNPs are associated with gastric cancer (GC) risk and survival. To test this hypothesis, we conducted a case-control study of 371 GC patients and 313 cancer-free controls frequency-matched by age, sex, and ethnicity. We genotyped four selected, potentially functional CD133 SNPs (rs2240688A>C, rs7686732C>G, rs10022537T>A, and rs3130C>T) and used logistic regression analysis for associations of these SNPs with GC risk and Cox hazards regression analysis for survival. We found that compared with the miRNA binding site rs2240688 AA genotype, AC + CC genotypes were associated with significantly increased GC risk (adjusted OR = 1.52, 95% CI = 1.09-2.13); for another miRNA binding site rs3130C>T SNP, the TT genotype was associated with significantly reduced GC risk (adjusted OR = 0.68, 95% CI = 0.48-0.97), compared with CC + CT genotypes. In all patients, the risk rs3130 TT variant genotype was significantly associated with overall survival (OS) (adjusted P(trend) = 0.016 and 0.007 under additive and recessive models, respectively). These findings suggest that these two CD133 miRNA binding site variants, rs2240688 and rs3130, may be potential biomarkers for genetic susceptibility to GC and possible predictors for survival in GC patients but require further validation by larger studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Limited data are available regarding the molecular epidemiology of Mycobacterium tuberculosis (Mtb) strains circulating in Guatemala. Beijing-lineage Mtb strains have gained prevalence worldwide and are associated with increased virulence and drug resistance, but there have been only a few cases reported in Central America. Here we report the first whole genome sequencing of Central American Beijing-lineage strains of Mtb. We find that multiple Beijing-lineage strains, derived from independent founding events, are currently circulating in Guatemala, but overall still represent a relatively small proportion of disease burden. Finally, we identify a specific Beijing-lineage outbreak centered on a poor neighborhood in Guatemala City.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The roles of long non-coding RNAs (lncRNAs) in regulating cancer and stem cells are being increasingly appreciated. Its diverse mechanisms provide the regulatory network with a bigger repertoire to increase complexity. Here we report a novel LncRNA, Lnc34a, that is enriched in colon cancer stem cells (CCSCs) and initiates asymmetric division by directly targeting the microRNA miR-34a to cause its spatial imbalance. Lnc34a recruits Dnmt3a via PHB2 and HDAC1 to methylate and deacetylate the miR-34a promoter simultaneously, hence epigenetically silencing miR-34a expression independent of its upstream regulator, p53. Lnc34a levels affect CCSC self-renewal and colorectal cancer (CRC) growth in xenograft models. Lnc34a is upregulated in late-stage CRCs, contributing to epigenetic miR-34a silencing and CRC proliferation. The fact that lncRNA targets microRNA highlights the regulatory complexity of non-coding RNAs (ncRNAs), which occupy the bulk of the genome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunity is broadly defined as a mechanism of protection against non-self entities, a process which must be sufficiently robust to both eliminate the initial foreign body and then be maintained over the life of the host. Life-long immunity is impossible without the development of immunological memory, of which a central component is the cellular immune system, or T cells. Cellular immunity hinges upon a naïve T cell pool of sufficient size and breadth to enable Darwinian selection of clones responsive to foreign antigens during an initial encounter. Further, the generation and maintenance of memory T cells is required for rapid clearance responses against repeated insult, and so this small memory pool must be actively maintained by pro-survival cytokine signals over the life of the host.

T cell development, function, and maintenance are regulated on a number of molecular levels through complex regulatory networks. Recently, small non-coding RNAs, miRNAs, have been observed to have profound impacts on diverse aspects of T cell biology by impeding the translation of RNA transcripts to protein. While many miRNAs have been described that alter T cell development or functional differentiation, little is known regarding the role that miRNAs have in T cell maintenance in the periphery at homeostasis.

In Chapter 3 of this dissertation, tools to study miRNA biology and function were developed. First, to understand the effect that miRNA overexpression had on T cell responses, a novel overexpression system was developed to enhance the processing efficiency and ultimate expression of a given miRNA by placing it within an alternative miRNA backbone. Next, a conditional knockout mouse system was devised to specifically delete miR-191 in a cell population expressing recombinase. This strategy was expanded to permit the selective deletion of single miRNAs from within a cluster to discern the effects of specific miRNAs that were previously inaccessible in isolation. Last, to enable the identification of potentially therapeutically viable miRNA function and/or expression modulators, a high-throughput flow cytometry-based screening system utilizing miRNA activity reporters was tested and validated. Thus, several novel and useful tools were developed to assist in the studies described in Chapter 4 and in future miRNA studies.

In Chapter 4 of this dissertation, the role of miR-191 in T cell biology was evaluated. Using tools developed in Chapter 3, miR-191 was observed to be critical for T cell survival following activation-induced cell death, while proliferation was unaffected by alterations in miR-191 expression. Loss of miR-191 led to significant decreases in the numbers of CD4+ and CD8+ T cells in the periphery lymph nodes, but this loss had no impact on the homeostatic activation of either CD4+ or CD8+ cells. These peripheral changes were not caused by gross defects in thymic development, but rather impaired STAT5 phosphorylation downstream of pro-survival cytokine signals. miR-191 does not specifically inhibit STAT5, but rather directly targets the scaffolding protein, IRS1, which in turn alters cytokine-dependent signaling. The defect in peripheral T cell maintenance was exacerbated by the presence of a Bcl-2YFP transgene, which led to even greater peripheral T cell losses in addition to developmental defects. These studies collectively demonstrate that miR-191 controls peripheral T cell maintenance by modulating homeostatic cytokine signaling through the regulation of IRS1 expression and downstream STAT5 phosphorylation.

The studies described in this dissertation collectively demonstrate that miR-191 has a profound role in the maintenance of T cells at homeostasis in the periphery. Importantly, the manipulation of miR-191 altered immune homeostasis without leading to severe immunodeficiency or autoimmunity. As much data exists on the causative agents disrupting active immune responses and the formation of immunological memory, the basic processes underlying the continued maintenance of a functioning immune system must be fully characterized to facilitate the development of methods for promoting healthy immune function throughout the life of the individual. These findings also have powerful implications for the ability of patients with modest perturbations in T cell homeostasis to effectively fight disease and respond to vaccination and may provide valuable targets for therapeutic intervention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: A major challenge in oncology is the selection of the most effective chemotherapeutic agents for individual patients, while the administration of ineffective chemotherapy increases mortality and decreases quality of life in cancer patients. This emphasizes the need to evaluate every patient's probability of responding to each chemotherapeutic agent and limiting the agents used to those most likely to be effective. METHODS AND RESULTS: Using gene expression data on the NCI-60 and corresponding drug sensitivity, mRNA and microRNA profiles were developed representing sensitivity to individual chemotherapeutic agents. The mRNA signatures were tested in an independent cohort of 133 breast cancer patients treated with the TFAC (paclitaxel, 5-fluorouracil, adriamycin, and cyclophosphamide) chemotherapy regimen. To further dissect the biology of resistance, we applied signatures of oncogenic pathway activation and performed hierarchical clustering. We then used mRNA signatures of chemotherapy sensitivity to identify alternative therapeutics for patients resistant to TFAC. Profiles from mRNA and microRNA expression data represent distinct biologic mechanisms of resistance to common cytotoxic agents. The individual mRNA signatures were validated in an independent dataset of breast tumors (P = 0.002, NPV = 82%). When the accuracy of the signatures was analyzed based on molecular variables, the predictive ability was found to be greater in basal-like than non basal-like patients (P = 0.03 and P = 0.06). Samples from patients with co-activated Myc and E2F represented the cohort with the lowest percentage (8%) of responders. Using mRNA signatures of sensitivity to other cytotoxic agents, we predict that TFAC non-responders are more likely to be sensitive to docetaxel (P = 0.04), representing a viable alternative therapy. CONCLUSIONS: Our results suggest that the optimal strategy for chemotherapy sensitivity prediction integrates molecular variables such as ER and HER2 status with corresponding microRNA and mRNA expression profiles. Importantly, we also present evidence to support the concept that analysis of molecular variables can present a rational strategy to identifying alternative therapeutic opportunities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: HIV-1 clade C (HIV-C) predominates worldwide, and anti-HIV-C vaccines are urgently needed. Neutralizing antibody (nAb) responses are considered important but have proved difficult to elicit. Although some current immunogens elicit antibodies that neutralize highly neutralization-sensitive (tier 1) HIV strains, most circulating HIVs exhibiting a less sensitive (tier 2) phenotype are not neutralized. Thus, both tier 1 and 2 viruses are needed for vaccine discovery in nonhuman primate models. METHODOLOGY/PRINCIPAL FINDINGS: We constructed a tier 1 simian-human immunodeficiency virus, SHIV-1157ipEL, by inserting an "early," recently transmitted HIV-C env into the SHIV-1157ipd3N4 backbone [1] encoding a "late" form of the same env, which had evolved in a SHIV-infected rhesus monkey (RM) with AIDS. SHIV-1157ipEL was rapidly passaged to yield SHIV-1157ipEL-p, which remained exclusively R5-tropic and had a tier 1 phenotype, in contrast to "late" SHIV-1157ipd3N4 (tier 2). After 5 weekly low-dose intrarectal exposures, SHIV-1157ipEL-p systemically infected 16 out of 17 RM with high peak viral RNA loads and depleted gut CD4+ T cells. SHIV-1157ipEL-p and SHIV-1157ipd3N4 env genes diverge mostly in V1/V2. Molecular modeling revealed a possible mechanism for the increased neutralization resistance of SHIV-1157ipd3N4 Env: V2 loops hindering access to the CD4 binding site, shown experimentally with nAb b12. Similar mutations have been linked to decreased neutralization sensitivity in HIV-C strains isolated from humans over time, indicating parallel HIV-C Env evolution in humans and RM. CONCLUSIONS/SIGNIFICANCE: SHIV-1157ipEL-p, the first tier 1 R5 clade C SHIV, and SHIV-1157ipd3N4, its tier 2 counterpart, represent biologically relevant tools for anti-HIV-C vaccine development in primates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Lower concentrations of the insulin-like growth factor binding protein-1 (IGFBP-1) and elevated concentrations of insulin or C-peptide have been associated with an increase in colorectal cancer risk (CRC). However few studies have evaluated IGFBP-1 and C-peptide in relation to adenomatous polyps, the only known precursor for CRC. METHODS: Between November 2001 and December 2002, we examined associations between circulating concentrations of insulin, C-peptide, IGFBP-1 and apoptosis among 190 individuals with one or more adenomatous polyps and 488 with no adenomatous polyps using logistic regression models. RESULTS: Individuals with the highest concentrations of C-peptide were more likely to have adenomas (OR = 2.2, 95% CI 1.4-4.0) than those with the lowest concentrations; associations that appeared to be stronger in men (OR = 4.4, 95% CI 1.7-10.9) than women. Individuals with high insulin concentrations also had a higher risk of adenomas (OR = 3.5, 95% CI 1.7-7.4), whereas higher levels of IGFBP-1 were associated with a reduced risk of adenomas in men only (OR = 0.3, 95% CI 0.1-0.7). Overweight and obese individuals with higher C-peptide levels (>1(st) Q) were at increased risk for lower apoptosis index (OR = 2.5, 95% CI 0.9-7.1), an association that remained strong in overweight and obese men (OR = 6.3, 95% CI 1.0-36.7). Higher levels of IGFBP-1 in overweight and obese individuals were associated with a reduced risk of low apoptosis (OR = 0.3, 95% CI 0.1-1.0). CONCLUSIONS: Associations between these peptides and the apoptosis index in overweight and obese individuals, suggest that the mechanism by which C-peptide could induce adenomas may include its anti-apoptotic properties. This study suggests that hyperinsulinemia and IGF hormones predict adenoma risk, and that outcomes associated with colorectal carcinogenesis maybe modified by gender.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Evaluating genetic susceptibility may clarify effects of known environmental factors and also identify individuals at high risk. We evaluated the association of four insulin-related pathway gene polymorphisms in insulin-like growth factor-1 (IGF-I) (CA)( n ) repeat, insulin-like growth factor-2 (IGF-II) (rs680), insulin-like growth factor-binding protein-3 (IGFBP-3) (rs2854744), and adiponectin (APM1 rs1501299) with colon cancer risk, as well as relationships with circulating IGF-I, IGF-II, IGFBP-3, and C-peptide in a population-based study. METHODS: Participants were African Americans (231 cases and 306 controls) and Whites (297 cases, 530 controls). Consenting subjects provided blood specimens and lifestyle/diet information. Genotyping for all genes except IGF-I was performed by the 5'-exonuclease (Taqman) assay. The IGF-I (CA)(n) repeat was assayed by PCR and fragment analysis. Circulating proteins were measured by enzyme immunoassays. Odds ratios (ORs) and 95 % confidence intervals (CIs) were calculated by logistic regression. RESULTS: The IGF-I (CA)( 19 ) repeat was higher in White controls (50 %) than African American controls (31 %). Whites homozygous for the IGF-I (CA)(19) repeat had a nearly twofold increase in risk of colon cancer (OR = 1.77; 95 % CI = 1.15-2.73), but not African Americans (OR = 0.73, 95 % CI 0.50-1.51). We observed an inverse association between the IGF-II Apa1 A-variant and colon cancer risk (OR = 0.49, 95 % CI 0.28-0.88) in Whites only. Carrying the IGFBP-3 variant alleles was associated with lower IGFBP-3 protein levels, a difference most pronounced in Whites (p-trend <0.05). CONCLUSIONS: These results support an association between insulin pathway-related genes and elevated colon cancer risk in Whites but not in African Americans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Consecutive febrile admissions were enrolled at two hospitals in Moshi, Tanzania. Confirmed acute Chikungunya virus (CHIKV), Dengue virus (DENV), and flavivirus infection were defined as a positive polymerase chain reaction (PCR) result. Presumptive acute DENV infection was defined as a positive anti-DENV immunoglobulin M (IgM) enzyme-linked immunsorbent assay (ELISA) result, and prior flavivirus exposure was defined as a positive anti-DENV IgG ELISA result. Among 870 participants, PCR testing was performed on 700 (80.5%). Of these, 55 (7.9%) had confirmed acute CHIKV infection, whereas no participants had confirmed acute DENV or flavivirus infection. Anti-DENV IgM serologic testing was performed for 747 (85.9%) participants, and of these 71 (9.5%) had presumptive acute DENV infection. Anti-DENV IgG serologic testing was performed for 751 (86.3%) participants, and of these 80 (10.7%) had prior flavivirus exposure. CHIKV infection was more common among infants and children than adults and adolescents (odds ratio [OR] 1.9, P = 0.026) and among HIV-infected patients with severe immunosuppression (OR 10.5, P = 0.007). CHIKV infection is an important but unrecognized cause of febrile illness in northern Tanzania. DENV or other closely related flaviviruses are likely also circulating.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prostate growth is dependent on circulating androgens, which can be influenced by hepatic function. Liver disease has been suggested to influence prostate cancer (CaP) incidence. However, the effect of hepatic function on CaP outcomes has not been investigated. A total of 1181 patients who underwent radical prostatectomy (RP) between 1988 and 2008 at four Veterans Affairs hospitals that comprise the Shared Equal Access Regional Cancer Hospital database and had available liver function test (LFT) data were included in the study. Independent associations of LFTs with unfavorable pathological features and biochemical recurrence were determined using logistic and Cox regression analyses. Serum glutamic oxaloacetic transaminase (SGOT) and serum glutamic pyruvic transaminase (SGPT) levels were elevated in 8.2 and 4.4% of patients, respectively. After controlling for CaP features, logistic regression revealed a significant association between SGOT levels and pathological Gleason sum > or =7(4+3) cancer (odds ratio=2.12; 95% confidence interval=1.11-4.05; P=0.02). Mild hepatic dysfunction was significantly associated with adverse CaP grade, but was not significantly associated with other adverse pathological features or biochemical recurrence in a cohort of men undergoing RP. The effect of moderate-to-severe liver disease on disease outcomes in CaP patients managed non-surgically remains to be investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The myokine irisin is supposed to be cleaved from a transmembrane precursor, FNDC5 (fibronectin type III domain containing 5), and to mediate beneficial effects of exercise on human metabolism. However, evidence for irisin circulating in blood is largely based on commercial ELISA kits which are based on polyclonal antibodies (pAbs) not previously tested for cross-reacting serum proteins. We have analyzed four commercial pAbs by Western blotting, which revealed prominent cross-reactivity with non-specific proteins in human and animal sera. Using recombinant glycosylated and non-glycosylated irisin as positive controls, we found no immune-reactive bands of the expected size in any biological samples. A FNDC5 signature was identified at ~20 kDa by mass spectrometry in human serum but was not detected by the commercial pAbs tested. Our results call into question all previous data obtained with commercial ELISA kits for irisin, and provide evidence against a physiological role for irisin in humans and other species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Fitness costs and slower disease progression are associated with a cytolytic T lymphocyte (CTL) escape mutation T242N in Gag in HIV-1-infected individuals carrying HLA-B*57/5801 alleles. However, the impact of different context in diverse HIV-1 strains on the fitness costs due to the T242N mutation has not been well characterized. To better understand the extent of fitness costs of the T242N mutation and the repair of fitness loss through compensatory amino acids, we investigated its fitness impact in different transmitted/founder (T/F) viruses. RESULTS: The T242N mutation resulted in various levels of fitness loss in four different T/F viruses. However, the fitness costs were significantly compromised by preexisting compensatory amino acids in (Isoleucine at position 247) or outside (glutamine at position 219) the CTL epitope. Moreover, the transmitted T242N escape mutant in subject CH131 was as fit as the revertant N242T mutant and the elimination of the compensatory amino acid I247 in the T/F viral genome resulted in significant fitness cost, suggesting the fitness loss caused by the T242N mutation had been fully repaired in the donor at transmission. Analysis of the global circulating HIV-1 sequences in the Los Alamos HIV Sequence Database showed a high prevalence of compensatory amino acids for the T242N mutation and other T cell escape mutations. CONCLUSIONS: Our results show that the preexisting compensatory amino acids in the majority of circulating HIV-1 strains could significantly compromise the fitness loss due to CTL escape mutations and thus increase challenges for T cell based vaccines.