38 resultados para CD8-Positive T-Lymphocytes -- immunology
Resumo:
During many chronic infections virus-specific CD8 T cells succumb to exhaustion as they lose their ability to respond to antigenic activation. Combinations of IL-12, IL-18, and IL-21 have been shown to induce the antigen-independent production of interferon (IFN)-γ by effector and memory CD8 T cells. In this study we investigated whether exhausted CD8 T cells are sensitive to activation by these cytokines. We show that effector and memory, but not exhausted, CD8 T cells produce IFN-γ and upregulate CD25 following exposure to certain combinations of IL-12, IL-18, and IL-21. The unresponsiveness of exhausted CD8 T cells is associated with downregulation of the IL-18-receptor-α (IL-18Rα). Although IL-18Rα expression is connected with the ability of memory CD8 T cells to self-renew and efflux rhodamine 123, the IL-18Rα(lo) exhausted cells remained capable of secreting this dye. To further evaluate the consequences of IL-18Rα downregulation, we tracked the fate of IL-18Rα-deficient CD8 T cells in chronically infected mixed bone marrow chimeras and discovered that IL-18Rα affects the initial but not later phases of the response. The antigen-independent responsiveness of exhausted CD8 T cells was also investigated following co-infection with Listeria monocytogenes, which induces the expression of IL-12 and IL-18. Although IL-18Rα(hi) memory cells upregulated CD25 and produced IFN-γ, the IL-18Rα(lo) exhausted cells failed to respond. Collectively, these findings indicate that as exhausted T cells adjust to the chronically infected environment, they lose their susceptibility to antigen-independent activation by cytokines, which compromises their ability to detect bacterial co-infections.
Resumo:
Muscle specific tyrosine kinase myasthenia gravis (MuSK MG) is a form of autoimmune MG that predominantly affects women and has unique clinical features, including prominent bulbar weakness, muscle atrophy, and excellent response to therapeutic plasma exchange. Patients with MuSK MG have predominantly IgG4 autoantibodies directed against MuSK on the postsynaptic muscle membrane. Lymphocyte functionality has not been reported in this condition. The goal of this study was to characterize T cell responses in patients with MuSK MG. Intracellular production of IFN-gamma, TNF-alpha, IL-2, IL-17, and IL-21 by CD4+ and CD8+ T cells was measured by polychromatic flow cytometry in peripheral blood samples from 11 Musk MG patients and 10 healthy controls. Only one MuSK MG patient was not receiving immunosuppressive therapy. Regulatory T cells (Treg) were also included in our analysis to determine if changes in T cell function were due to altered Treg frequencies. CD8+ T cells from MuSK MG patients had higher frequencies of polyfunctional responses than controls, and CD4+ T cells had higher IL-2, TNF-alpha, and IL-17. MuSK MG patients had a higher percentage of CD4+ T cells producing combinations of IFN-gamma/IL-2/TNF-gamma, TNF-alpha/IL-2, and IFN-gamma/TNF-alpha. Interestingly, Treg numbers and CD39 expression were not different from control values. MuSK MG patients had increased frequencies of Th1 and Th17 cytokines and were primed for polyfunctional proinflammatory responses that cannot be explained by a defect in CD39 expression or Treg number.
Resumo:
African green monkeys (AGM) and other natural hosts for simian immunodeficiency virus (SIV) do not develop an AIDS-like disease following SIV infection. To evaluate differences in the role of SIV-specific adaptive immune responses between natural and nonnatural hosts, we used SIV(agmVer90) to infect vervet AGM and pigtailed macaques (PTM). This infection results in robust viral replication in both vervet AGM and pigtailed macaques (PTM) but only induces AIDS in the latter species. We delayed the development of adaptive immune responses through combined administration of anti-CD8 and anti-CD20 lymphocyte-depleting antibodies during primary infection of PTM (n = 4) and AGM (n = 4), and compared these animals to historical controls infected with the same virus. Lymphocyte depletion resulted in a 1-log increase in primary viremia and a 4-log increase in post-acute viremia in PTM. Three of the four PTM had to be euthanized within 6 weeks of inoculation due to massive CMV reactivation and disease. In contrast, all four lymphocyte-depleted AGM remained healthy. The lymphocyte-depleted AGM showed only a trend toward a prolongation in peak viremia but the groups were indistinguishable during chronic infection. These data show that adaptive immune responses are critical for controlling disease progression in pathogenic SIV infection in PTM. However, the maintenance of a disease-free course of SIV infection in AGM likely depends on a number of mechanisms including non-adaptive immune mechanisms.
Resumo:
Grafts can be rejected even when matched for MHC because of differences in the minor histocompatibility Ags (mH-Ags). H4- and H60-derived epitopes are known as immunodominant mH-Ags in H2(b)-compatible BALB.B to C57BL/6 transplantation settings. Although multiple explanations have been provided to explain immunodominance of Ags, the role of vascularization of the graft is yet to be determined. In this study, we used heart (vascularized) and skin (nonvascularized) transplantations to determine the role of primary vascularization of the graft. A higher IFN-γ response toward H60 peptide occurs in heart recipients. In contrast, a higher IFN-γ response was generated against H4 peptide in skin transplant recipients. Peptide-loaded tetramer staining revealed a distinct antigenic hierarchy between heart and skin transplantation: H60-specific CD8(+) T cells were the most abundant after heart transplantation, whereas H4-specific CD8(+) T cells were more abundant after skin graft. Neither the tissue-specific distribution of mH-Ags nor the draining lymph node-derived dendritic cells correlated with the observed immunodominance. Interestingly, non-primarily vascularized cardiac allografts mimicked skin grafts in the observed immunodominance, and H60 immunodominance was observed in primarily vascularized skin grafts. However, T cell depletion from the BALB.B donor prior to cardiac allograft induces H4 immunodominance in vascularized cardiac allograft. Collectively, our data suggest that immediate transmigration of donor T cells via primary vascularization is responsible for the immunodominance of H60 mH-Ag in organ and tissue transplantation.
Resumo:
BACKGROUND: Interleukin (IL)-15 is a chemotactic factor to T cells. It induces proliferation and promotes survival of activated T cells. IL-15 receptor blockade in mouse cardiac and islet allotransplant models has led to long-term engraftment and a regulatory T-cell environment. This study investigated the efficacy of IL-15 receptor blockade using Mut-IL-15/Fc in an outbred non-human primate model of renal allotransplantation. METHODS: Male cynomolgus macaque donor-recipient pairs were selected based on ABO typing, major histocompatibility complex class I typing, and carboxy-fluorescein diacetate succinimidyl ester-based mixed lymphocyte responses. Once animals were assigned to one of six treatment groups, they underwent renal transplantation and bilateral native nephrectomy. Serum creatinine level was monitored twice weekly and as indicated, and protocol biopsies were performed. Rejection was defined as a increase in serum creatinine to 1.5 mg/dL or higher and was confirmed histologically. Complete blood counts and flow cytometric analyses were performed periodically posttransplant; pharmacokinetic parameters of Mut-IL-15/Fc were assessed. RESULTS: Compared with control animals, Mut-IL-15/Fc-treated animals did not demonstrate increased graft survival despite adequate serum levels of Mut-IL-15/Fc. Flow cytometric analysis of white blood cell subgroups demonstrated a decrease in CD8 T-cell and natural killer cell numbers, although this did not reach statistical significance. Interestingly, two animals receiving Mut-IL-15/Fc developed infectious complications, but no infection was seen in control animals. Renal pathology varied widely. CONCLUSIONS: Peritransplant IL-15 receptor blockade does not prolong allograft survival in non-human primate renal transplantation; however, it reduces the number of CD8 T cells and natural killer cells in the peripheral blood.
Resumo:
BACKGROUND: Blocking leukocyte function-associated antigen (LFA)-1 in organ transplant recipients prolongs allograft survival. However, the precise mechanisms underlying the therapeutic potential of LFA-1 blockade in preventing chronic rejection are not fully elucidated. Cardiac allograft vasculopathy (CAV) is the preeminent cause of late cardiac allograft failure characterized histologically by concentric intimal hyperplasia. METHODS: Anti-LFA-1 monoclonal antibody was used in a multiple minor antigen-mismatched, BALB.B (H-2B) to C57BL/6 (H-2B), cardiac allograft model. Endogenous donor-specific CD8 T cells were tracked down using major histocompatibility complex multimers against the immunodominant H4, H7, H13, H28, and H60 minor Ags. RESULTS: The LFA-1 blockade prevented acute rejection and preserved palpable beating quality with reduced CD8 T-cell graft infiltration. Interestingly, less CD8 T cell infiltration was secondary to reduction of T-cell expansion rather than less trafficking. The LFA-1 blockade significantly suppressed the clonal expansion of minor histocompatibility antigen-specific CD8 T cells during the expansion and contraction phase. The CAV development was evaluated with morphometric analysis at postoperation day 100. The LFA-1 blockade profoundly attenuated neointimal hyperplasia (61.6 vs 23.8%; P < 0.05), CAV-affected vessel number (55.3 vs 15.9%; P < 0.05), and myocardial fibrosis (grade 3.29 vs 1.8; P < 0.05). Finally, short-term LFA-1 blockade promoted long-term donor-specific regulation, which resulted in attenuated transplant arteriosclerosis. CONCLUSIONS: Taken together, LFA-1 blockade inhibits initial endogenous alloreactive T-cell expansion and induces more regulation. Such a mechanism supports a pulse tolerance induction strategy with anti-LFA-1 rather than long-term treatment.
Resumo:
There is great interindividual variability in HIV-1 viral setpoint after seroconversion, some of which is known to be due to genetic differences among infected individuals. Here, our focus is on determining, genome-wide, the contribution of variable gene expression to viral control, and to relate it to genomic DNA polymorphism. RNA was extracted from purified CD4+ T-cells from 137 HIV-1 seroconverters, 16 elite controllers, and 3 healthy blood donors. Expression levels of more than 48,000 mRNA transcripts were assessed by the Human-6 v3 Expression BeadChips (Illumina). Genome-wide SNP data was generated from genomic DNA using the HumanHap550 Genotyping BeadChip (Illumina). We observed two distinct profiles with 260 genes differentially expressed depending on HIV-1 viral load. There was significant upregulation of expression of interferon stimulated genes with increasing viral load, including genes of the intrinsic antiretroviral defense. Upon successful antiretroviral treatment, the transcriptome profile of previously viremic individuals reverted to a pattern comparable to that of elite controllers and of uninfected individuals. Genome-wide evaluation of cis-acting SNPs identified genetic variants modulating expression of 190 genes. Those were compared to the genes whose expression was found associated with viral load: expression of one interferon stimulated gene, OAS1, was found to be regulated by a SNP (rs3177979, p = 4.9E-12); however, we could not detect an independent association of the SNP with viral setpoint. Thus, this study represents an attempt to integrate genome-wide SNP signals with genome-wide expression profiles in the search for biological correlates of HIV-1 control. It underscores the paradox of the association between increasing levels of viral load and greater expression of antiviral defense pathways. It also shows that elite controllers do not have a fully distinctive mRNA expression pattern in CD4+ T cells. Overall, changes in global RNA expression reflect responses to viral replication rather than a mechanism that might explain viral control.
Resumo:
Microbicides are women-controlled prophylactics for sexually transmitted infections. The most important class of microbicides target HIV-1 and contain antiviral agents formulated for topical vaginal delivery. Identification of new viral entry inhibitors that target the HIV-1 envelope is important because they can inactivate HIV-1 in the vaginal lumen before virions can come in contact with CD4+ cells in the vaginal mucosa. Carbohydrate binding agents (CBAs) demonstrate the ability to act as entry inhibitors due to their ability to bind to glycans and prevent gp120 binding to CD4+ cells. However, as proteins they present significant challenges in regard to economical production and formulation for resource-poor environments. We have synthesized water-soluble polymer CBAs that contain multiple benzoboroxole moieties. A benzoboroxole-functionalized monomer was synthesized and incorporated into linear oligomers with 2-hydroxypropylmethacrylamide (HPMAm) at different feed ratios using free radical polymerization. The benzoboroxole small molecule analogue demonstrated weak affinity for HIV-1BaL gp120 by SPR; however, the 25 mol % functionalized benzoboroxole oligomer demonstrated a 10-fold decrease in the K(D) for gp120, suggesting an increased avidity for the multivalent polymer construct. High molecular weight polymers functionalized with 25, 50, and 75 mol % benzoboroxole were synthesized and tested for their ability to neutralize HIV-1 entry for two HIV-1 clades and both R5 and X4 coreceptor tropism. All three polymers demonstrated activity against all viral strains tested with EC(50)s that decrease from 15000 nM (1500 microg mL(-1)) for the 25 mol % functionalized polymers to 11 nM (1 microg mL(-1)) for the 75 mol % benzoboroxole-functionalized polymers. These polymers exhibited minimal cytotoxicity after 24 h exposure to a human vaginal cell line.
Resumo:
Like human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus of chimpanzees (SIVcpz) can cause CD4+ T cell loss and premature death. Here, we used molecular surveillance tools and mathematical modeling to estimate the impact of SIVcpz infection on chimpanzee population dynamics. Habituated (Mitumba and Kasekela) and non-habituated (Kalande) chimpanzees were studied in Gombe National Park, Tanzania. Ape population sizes were determined from demographic records (Mitumba and Kasekela) or individual sightings and genotyping (Kalande), while SIVcpz prevalence rates were monitored using non-invasive methods. Between 2002-2009, the Mitumba and Kasekela communities experienced mean annual growth rates of 1.9% and 2.4%, respectively, while Kalande chimpanzees suffered a significant decline, with a mean growth rate of -6.5% to -7.4%, depending on population estimates. A rapid decline in Kalande was first noted in the 1990s and originally attributed to poaching and reduced food sources. However, between 2002-2009, we found a mean SIVcpz prevalence in Kalande of 46.1%, which was almost four times higher than the prevalence in Mitumba (12.7%) and Kasekela (12.1%). To explore whether SIVcpz contributed to the Kalande decline, we used empirically determined SIVcpz transmission probabilities as well as chimpanzee mortality, mating and migration data to model the effect of viral pathogenicity on chimpanzee population growth. Deterministic calculations indicated that a prevalence of greater than 3.4% would result in negative growth and eventual population extinction, even using conservative mortality estimates. However, stochastic models revealed that in representative populations, SIVcpz, and not its host species, frequently went extinct. High SIVcpz transmission probability and excess mortality reduced population persistence, while intercommunity migration often rescued infected communities, even when immigrating females had a chance of being SIVcpz infected. Together, these results suggest that the decline of the Kalande community was caused, at least in part, by high levels of SIVcpz infection. However, population extinction is not an inevitable consequence of SIVcpz infection, but depends on additional variables, such as migration, that promote survival. These findings are consistent with the uneven distribution of SIVcpz throughout central Africa and explain how chimpanzees in Gombe and elsewhere can be at equipoise with this pathogen.
Resumo:
Asthma is a chronic inflammatory disorder of the airways that is coordinated by Th2 cells in both human asthmatics and animal models of allergic asthma. Migration of Th2 cells to the lung is key to their inflammatory function and is regulated in large part by chemokine receptors, members of the seven-membrane-spanning receptor family. It has been reported recently that T cells lacking beta-arrestin-2, a G protein-coupled receptor regulatory protein, demonstrate impaired migration in vitro. Here we show that allergen-sensitized mice having a targeted deletion of the beta-arrestin-2 gene do not accumulate T lymphocytes in their airways, nor do they demonstrate other physiological and inflammatory features characteristic of asthma. In contrast, the airway inflammatory response to LPS, an event not coordinated by Th2 cells, is fully functional in mice lacking beta-arrestin-2. beta-arrestin-2-deficient mice demonstrate OVA-specific IgE responses, but have defective macrophage-derived chemokine-mediated CD4+ T cell migration to the lung. This report provides the first evidence that beta-arrestin-2 is required for the manifestation of allergic asthma. Because beta-arrestin-2 regulates the development of allergic inflammation at a proximal step in the inflammatory cascade, novel therapies focused on this protein may prove useful in the treatment of asthma.
Resumo:
De novo donor-specific antibody (DSA) after organ transplantation promotes antibody-mediated rejection (AMR) and causes late graft loss. Previously, we demonstrated that depletion using anti-CD3 immunotoxin combined with tacrolimus and alefacept (AMR regimen) reliably induced early DSA production with AMR in a nonhuman primate kidney transplant model. Five animals were assigned as positive AMR controls, four received additional belatacept and four received additional anti-CD40 mAb (2C10R4). Notably, production of early de novo DSA was completely attenuated with additional belatacept or 2C10R4 treatment. In accordance with this, while positive controls experienced a decrease in peripheral IgM(+) B cells, bela- and 2C10R4-added groups maintained a predominant population of IgM(+) B cells, potentially indicating decreased isotype switching. Central memory T cells (CD4(+) CD28(+) CD95(+)) as well as PD-1(hi) CD4(+) T cells were decreased in both bela-added and 2C10R4-added groups. In analyzing germinal center (GC) reactions in situ, lymph nodes further revealed a reduction of B cell clonal expansion, GC-follicular helper T (Tfh) cells, and IL-21 production inside GCs with additional belatacept or 2C10R4 treatment. Here we provide evidence that belatacept and 2C10R4 selectively suppresses the humoral response via regulating Tfh cells and prevents AMR in this nonhuman primate model.
Resumo:
Activation of CD4+ T cells results in rapid proliferation and differentiation into effector and regulatory subsets. CD4+ effector T cell (Teff) (Th1 and Th17) and Treg subsets are metabolically distinct, yet the specific metabolic differences that modify T cell populations are uncertain. Here, we evaluated CD4+ T cell populations in murine models and determined that inflammatory Teffs maintain high expression of glycolytic genes and rely on high glycolytic rates, while Tregs are oxidative and require mitochondrial electron transport to proliferate, differentiate, and survive. Metabolic profiling revealed that pyruvate dehydrogenase (PDH) is a key bifurcation point between T cell glycolytic and oxidative metabolism. PDH function is inhibited by PDH kinases (PDHKs). PDHK1 was expressed in Th17 cells, but not Th1 cells, and at low levels in Tregs, and inhibition or knockdown of PDHK1 selectively suppressed Th17 cells and increased Tregs. This alteration in the CD4+ T cell populations was mediated in part through ROS, as N-acetyl cysteine (NAC) treatment restored Th17 cell generation. Moreover, inhibition of PDHK1 modulated immunity and protected animals against experimental autoimmune encephalomyelitis, decreasing Th17 cells and increasing Tregs. Together, these data show that CD4+ subsets utilize and require distinct metabolic programs that can be targeted to control specific T cell populations in autoimmune and inflammatory diseases.
Resumo:
HIV-1 mucosal transmission begins with virus or virus-infected cells moving through mucus across mucosal epithelium to infect CD4+ T cells. Although broadly neutralizing antibodies (bnAbs) are the type of HIV-1 antibodies that are most likely protective, they are not induced with current vaccine candidates. In contrast, antibodies that do not neutralize primary HIV-1 strains in the TZM-bl infection assay are readily induced by current vaccine candidates and have also been implicated as secondary correlates of decreased HIV-1 risk in the RV144 vaccine efficacy trial. Here, we have studied the capacity of anti-Env monoclonal antibodies (mAbs) against either the immunodominant region of gp41 (7B2 IgG1), the first constant region of gp120 (A32 IgG1), or the third variable loop (V3) of gp120 (CH22 IgG1) to modulate in vivo rectal mucosal transmission of a high-dose simian-human immunodeficiency virus (SHIV-BaL) in rhesus macaques. 7B2 IgG1 or A32 IgG1, each containing mutations to enhance Fc function, was administered passively to rhesus macaques but afforded no protection against productive clinical infection while the positive control antibody CH22 IgG1 prevented infection in 4 of 6 animals. Enumeration of transmitted/founder (T/F) viruses revealed that passive infusion of each of the three antibodies significantly reduced the number of T/F genomes. Thus, some antibodies that bind HIV-1 Env but fail to neutralize virus in traditional neutralization assays may limit the number of T/F viruses involved in transmission without leading to enhancement of viral infection. For one of these mAbs, gp41 mAb 7B2, we provide the first co-crystal structure in complex with a common cyclical loop motif demonstrated to be critical for infection by other retroviruses.
Resumo:
BACKGROUND: Individuals without prior immunity to a vaccine vector may be more sensitive to reactions following injection, but may also show optimal immune responses to vaccine antigens. To assess safety and maximal tolerated dose of an adenoviral vaccine vector in volunteers without prior immunity, we evaluated a recombinant replication-defective adenovirus type 5 (rAd5) vaccine expressing HIV-1 Gag, Pol, and multiclade Env proteins, VRC-HIVADV014-00-VP, in a randomized, double-blind, dose-escalation, multicenter trial (HVTN study 054) in HIV-1-seronegative participants without detectable neutralizing antibodies (nAb) to the vector. As secondary outcomes, we also assessed T-cell and antibody responses. METHODOLOGY/PRINCIPAL FINDINGS: Volunteers received one dose of vaccine at either 10(10) or 10(11) adenovector particle units, or placebo. T-cell responses were measured against pools of global potential T-cell epitope peptides. HIV-1 binding and neutralizing antibodies were assessed. Systemic reactogenicity was greater at the higher dose, but the vaccine was well tolerated at both doses. Although no HIV infections occurred, commercial diagnostic assays were positive in 87% of vaccinees one year after vaccination. More than 85% of vaccinees developed HIV-1-specific T-cell responses detected by IFN-γ ELISpot and ICS assays at day 28. T-cell responses were: CD8-biased; evenly distributed across the three HIV-1 antigens; not substantially increased at the higher dose; and detected at similar frequencies one year following injection. The vaccine induced binding antibodies against at least one HIV-1 Env antigen in all recipients. CONCLUSIONS/SIGNIFICANCE: This vaccine appeared safe and was highly immunogenic following a single dose in human volunteers without prior nAb against the vector. TRIAL REGISTRATION: ClinicalTrials.gov NCT00119873.
Resumo:
CD8+ T cells are associated with long term control of virus replication to low or undetectable levels in a population of HIV+ therapy-naïve individuals known as virus controllers (VCs; <5000 RNA copies/ml and CD4+ lymphocyte counts >400 cells/µl). These subjects' ability to control viremia in the absence of therapy makes them the gold standard for the type of CD8+ T-cell response that should be induced with a vaccine. Studying the regulation of CD8+ T cells responses in these VCs provides the opportunity to discover mechanisms of durable control of HIV-1. Previous research has shown that the CD8+ T cell population in VCs is heterogeneous in its ability to inhibit virus replication and distinct T cells are responsible for virus inhibition. Further defining both the functional properties and regulation of the specific features of the select CD8+ T cells responsible for potent control of viremia the in VCs would enable better evaluation of T cell-directed vaccine strategies and may inform the design of new therapies.
Here we discuss the progress made in elucidating the features and regulation of CD8+ T cell response in virus controllers. We first detail the development of assays to quantify CD8+ T cells' ability to inhibit virus replication. This includes the use of a multi-clade HIV-1 panel which can subsequently be used as a tool for evaluation of T cell directed vaccines. We used these assays to evaluate the CD8+ response among cohorts of HIV-1 seronegative, HIV-1 acutely infected, and HIV-1 chronically infected (both VC and chronic viremic) patients. Contact and soluble CD8+ T cell virus inhibition assays (VIAs) are able to distinguish these patient groups based on the presence and magnitude of the responses. When employed in conjunction with peptide stimulation, the soluble assay reveals peptide stimulation induces CD8+ T cell responses with a prevalence of Gag p24 and Nef specificity among the virus controllers tested. Given this prevalence, we aimed to determine the gene expression profile of Gag p24-, Nef-, and unstimulated CD8+ T cells. RNA was isolated from CD8+ T-cells from two virus controllers with strong virus inhibition and one seronegative donor after a 5.5 hour stimulation period then analyzed using the Illumina Human BeadChip platform (Duke Center for Human Genome Variation). Analysis revealed that 565 (242 Nef and 323 Gag) genes were differentially expressed in CD8+ T-cells that were able to inhibit virus replication compared to those that could not. We compared the differentially expressed genes to published data sets from other CD8+ T-cell effector function experiments focusing our analysis on the most recurring genes with immunological, gene regulatory, apoptotic or unknown functions. The most commonly identified gene in these studies was TNFRSF9. Using PCR in a larger cohort of virus controllers we confirmed the up-regulation of TNFRSF9 in Gag p24 and Nef-specific CD8+ T cell mediated virus inhibition. We also observed increase in the mRNA encoding antiviral cytokines macrophage inflammatory proteins (MIP-1α, MIP-1αP, MIP-1β), interferon gamma (IFN-γ), granulocyte-macrophage colony-stimulating factor (GM-CSF), and recently identified lymphotactin (XCL1).
Our previous work suggests the CD8+ T-cell response to HIV-1 can be regulated at the level of gene regulation. Because RNA abundance is modulated by transcription of new mRNAs and decay of new and existing RNA we aimed to evaluate the net rate of transcription and mRNA decay for the cytokines we identified as differentially regulated. To estimate rate of mRNA synthesis and decay, we stimulated isolated CD8+ T-cells with Gag p24 and Nef peptides adding 4-thiouridine (4SU) during the final hour of stimulation, allowing for separation of RNA made during the final hour of stimulation. Subsequent PCR of RNA isolated from these cells, allowed us to determine how much mRNA was made for our genes of interest during the final hour which we used to calculate rate of transcription. To assess if stimulation caused a change in RNA stability, we calculated the decay rates of these mRNA over time. In Gag p24 and Nef stimulated T cells , the abundance of the mRNA of many of the cytokines examined was dependent on changes in both transcription and mRNA decay with evidence for potential differences in the regulation of mRNA between Nef and Gag specific CD8+ T cells. The results were highly reproducible in that in one subject that was measured in three independent experiments the results were concordant.
This data suggests that mRNA stability, in addition to transcription, is key in regulating the direct anti-HIV-1 function of antigen-specific memory CD8+ T cells by enabling rapid recall of anti-HIV-1 effector functions, namely the production and increased stability of antiviral cytokines. We have started to uncover the mechanisms employed by CD8+ T cell subsets with antigen-specific anti-HIV-1 activity, in turn, enhancing our ability to inhibit virus replication by informing both cure strategies and HIV-1 vaccine designs that aim to reduce transmission and can aid in blocking HIV-1 acquisition.