23 resultados para Breed predisposition
Resumo:
Multiple functions of the beta2-adrenergic receptor (ADRB2) and angiotensin-converting enzyme (ACE) genes warrant studies of their associations with aging-related phenotypes. We focus on multimarker analyses and analyses of the effects of compound genotypes of two polymorphisms in the ADRB2 gene, rs1042713 and rs1042714, and 11 polymorphisms of the ACE gene, on the risk of such an aging-associated phenotype as myocardial infarction (MI). We used the data from a genotyped sample of the Framingham Heart Study Offspring (FHSO) cohort (n = 1500) followed for about 36 years with six examinations. The ADRB2 rs1042714 (C-->G) polymorphism and two moderately correlated (r(2) = 0.77) ACE polymorphisms, rs4363 (A-->G) and rs12449782 (A-->G), were significantly associated with risks of MI in this aging cohort in multimarker models. Predominantly linked ACE genotypes exhibited opposite effects on MI risks, e.g., the AA (rs12449782) genotype had a detrimental effect, whereas the predominantly linked AA (rs4363) genotype exhibited a protective effect. This trade-off occurs as a result of the opposite effects of rare compound genotypes of the ACE polymorphisms with a single dose of the AG heterozygote. This genetic trade-off is further augmented by the selective modulating effect of the rs1042714 ADRB2 polymorphism. The associations were not altered by adjustment for common MI risk factors. The results suggest that effects of single specific genetic variants of the ADRB2 and ACE genes on MI can be readily altered by gene-gene or/and gene-environmental interactions, especially in large heterogeneous samples. Multimarker genetic analyses should benefit studies of complex aging-associated phenotypes.
Resumo:
A female patient, with normal familial history, developed at the age of 30 months an episode of diarrhoea, vomiting and lethargy which resolved spontaneously. At the age of 3 years, the patient re-iterated vomiting, was sub-febrile and hypoglycemic, fell into coma, developed seizures and sequels involving right hemi-body. Urinary excretion of hexanoylglycine and suberylglycine was low during this metabolic decompensation. A study of pre- and post-prandial blood glucose and ketones over a period of 24 hours showed a normal glycaemic cycle but a failure to form ketones after 12 hours fasting, suggesting a mitochondrial β-oxidation defect. Total blood carnitine was lowered with unesterified carnitine being half of the lowest control value. A diagnosis of mild MCAD deficiency (MCADD) was based on rates of 1-14C-octanoate and 9, 10-3H-myristate oxidation and of octanoyl-CoA dehydrogenase being reduced to 25% of control values. Other mitochondrial fatty acid oxidation proteins were functionally normal. De novo acylcarnitine synthesis in whole blood samples incubated with deuterated palmitate was also typical of MCADD. Genetic studies showed that the patient was compound heterozygous with a sequence variation in both of the two ACADM alleles; one had the common c.985A>G mutation and the other had a novel c.145C>G mutation. This is the first report for the ACADM gene c.145C>G mutation: it is located in exon 3 and causes a replacement of glutamine to glutamate at position 24 of the mature protein (Q24E). Associated with heterozygosity for c.985A>G mutation, this mutation is responsible for a mild MCADD phenotype along with a clinical story corroborating the emerging literature view that patients with genotypes representing mild MCADD (high residual enzyme activity and low urinary levels of glycine conjugates), similar to some of the mild MCADDs detected by MS/MS newborn screening, may be at risk for disease presentation.
Resumo:
Genome-wide association studies (GWAS) have now identified at least 2,000 common variants that appear associated with common diseases or related traits (http://www.genome.gov/gwastudies), hundreds of which have been convincingly replicated. It is generally thought that the associated markers reflect the effect of a nearby common (minor allele frequency >0.05) causal site, which is associated with the marker, leading to extensive resequencing efforts to find causal sites. We propose as an alternative explanation that variants much less common than the associated one may create "synthetic associations" by occurring, stochastically, more often in association with one of the alleles at the common site versus the other allele. Although synthetic associations are an obvious theoretical possibility, they have never been systematically explored as a possible explanation for GWAS findings. Here, we use simple computer simulations to show the conditions under which such synthetic associations will arise and how they may be recognized. We show that they are not only possible, but inevitable, and that under simple but reasonable genetic models, they are likely to account for or contribute to many of the recently identified signals reported in genome-wide association studies. We also illustrate the behavior of synthetic associations in real datasets by showing that rare causal mutations responsible for both hearing loss and sickle cell anemia create genome-wide significant synthetic associations, in the latter case extending over a 2.5-Mb interval encompassing scores of "blocks" of associated variants. In conclusion, uncommon or rare genetic variants can easily create synthetic associations that are credited to common variants, and this possibility requires careful consideration in the interpretation and follow up of GWAS signals.
Resumo:
To investigate the underlying mechanisms of T2D pathogenesis, we looked for diabetes susceptibility genes that increase the risk of type 2 diabetes (T2D) in a Han Chinese population. A two-stage genome-wide association (GWA) study was conducted, in which 995 patients and 894 controls were genotyped using the Illumina HumanHap550-Duo BeadChip for the first genome scan stage. This was further replicated in 1,803 patients and 1,473 controls in stage 2. We found two loci not previously associated with diabetes susceptibility in and around the genes protein tyrosine phosphatase receptor type D (PTPRD) (P = 8.54x10(-10); odds ratio [OR] = 1.57; 95% confidence interval [CI] = 1.36-1.82), and serine racemase (SRR) (P = 3.06x10(-9); OR = 1.28; 95% CI = 1.18-1.39). We also confirmed that variants in KCNQ1 were associated with T2D risk, with the strongest signal at rs2237895 (P = 9.65x10(-10); OR = 1.29, 95% CI = 1.19-1.40). By identifying two novel genetic susceptibility loci in a Han Chinese population and confirming the involvement of KCNQ1, which was previously reported to be associated with T2D in Japanese and European descent populations, our results may lead to a better understanding of differences in the molecular pathogenesis of T2D among various populations.
Resumo:
Lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) is an emerging risk factor and therapeutic target for cardiovascular disease. The activity and mass of this enzyme are heritable traits, but major genetic determinants have not been explored in a systematic, genome-wide fashion. We carried out a genome-wide association study of Lp-PLA(2) activity and mass in 6,668 Caucasian subjects from the population-based Framingham Heart Study. Clinical data and genotypes from the Affymetrix 550K SNP array were obtained from the open-access Framingham SHARe project. Each polymorphism that passed quality control was tested for associations with Lp-PLA(2) activity and mass using linear mixed models implemented in the R statistical package, accounting for familial correlations, and controlling for age, sex, smoking, lipid-lowering-medication use, and cohort. For Lp-PLA(2) activity, polymorphisms at four independent loci reached genome-wide significance, including the APOE/APOC1 region on chromosome 19 (p = 6 x 10(-24)); CELSR2/PSRC1 on chromosome 1 (p = 3 x 10(-15)); SCARB1 on chromosome 12 (p = 1x10(-8)) and ZNF259/BUD13 in the APOA5/APOA1 gene region on chromosome 11 (p = 4 x 10(-8)). All of these remained significant after accounting for associations with LDL cholesterol, HDL cholesterol, or triglycerides. For Lp-PLA(2) mass, 12 SNPs achieved genome-wide significance, all clustering in a region on chromosome 6p12.3 near the PLA2G7 gene. Our analyses demonstrate that genetic polymorphisms may contribute to inter-individual variation in Lp-PLA(2) activity and mass.
Resumo:
We present a novel strategy that uses high-throughput methods of isolating and mapping C. elegans mutants susceptible to pathogen infection. We show that C. elegans mutants that exhibit an enhanced pathogen accumulation (epa) phenotype can be rapidly identified and isolated using a sorting system that allows automation of the analysis, sorting, and dispensing of C. elegans by measuring fluorescent bacteria inside the animals. Furthermore, we validate the use of Amplifluor as a new single nucleotide polymorphism (SNP) mapping technique in C. elegans. We show that a set of 9 SNPs allows the linkage of C. elegans mutants to a 5-8 megabase sub-chromosomal region.
Resumo:
BACKGROUND: We previously identified a panel of genes associated with outcome of ovarian cancer. The purpose of the current study was to assess whether variants in these genes correlated with ovarian cancer risk. METHODS AND FINDINGS: Women with and without invasive ovarian cancer (749 cases, 1,041 controls) were genotyped at 136 single nucleotide polymorphisms (SNPs) within 13 candidate genes. Risk was estimated for each SNP and for overall variation within each gene. At the gene-level, variation within MSL1 (male-specific lethal-1 homolog) was associated with risk of serous cancer (p = 0.03); haplotypes within PRPF31 (PRP31 pre-mRNA processing factor 31 homolog) were associated with risk of invasive disease (p = 0.03). MSL1 rs7211770 was associated with decreased risk of serous disease (OR 0.81, 95% CI 0.66-0.98; p = 0.03). SNPs in MFSD7, BTN3A3, ZNF200, PTPRS, and CCND1A were inversely associated with risk (p<0.05), and there was increased risk at HEXIM1 rs1053578 (p = 0.04, OR 1.40, 95% CI 1.02-1.91). CONCLUSIONS: Tumor studies can reveal novel genes worthy of follow-up for cancer susceptibility. Here, we found that inherited markers in the gene encoding MSL1, part of a complex that modifies the histone H4, may decrease risk of invasive serous ovarian cancer.
Resumo:
Although it has recently been shown that A/J mice are highly susceptible to Staphylococcus aureus sepsis as compared to C57BL/6J, the specific genes responsible for this differential phenotype are unknown. Using chromosome substitution strains (CSS), we found that loci on chromosomes 8, 11, and 18 influence susceptibility to S. aureus sepsis in A/J mice. We then used two candidate gene selection strategies to identify genes on these three chromosomes associated with S. aureus susceptibility, and targeted genes identified by both gene selection strategies. First, we used whole genome transcription profiling to identify 191 (56 on chr. 8, 100 on chr. 11, and 35 on chr. 18) genes on our three chromosomes of interest that are differentially expressed between S. aureus-infected A/J and C57BL/6J. Second, we identified two significant quantitative trait loci (QTL) for survival post-infection on chr. 18 using N(2) backcross mice (F(1) [C18A]xC57BL/6J). Ten genes on chr. 18 (March3, Cep120, Chmp1b, Dcp2, Dtwd2, Isoc1, Lman1, Spire1, Tnfaip8, and Seh1l) mapped to the two significant QTL regions and were also identified by the expression array selection strategy. Using real-time PCR, 6 of these 10 genes (Chmp1b, Dtwd2, Isoc1, Lman1, Tnfaip8, and Seh1l) showed significantly different expression levels between S. aureus-infected A/J and C57BL/6J. For two (Tnfaip8 and Seh1l) of these 6 genes, siRNA-mediated knockdown of gene expression in S. aureus-challenged RAW264.7 macrophages induced significant changes in the cytokine response (IL-1 beta and GM-CSF) compared to negative controls. These cytokine response changes were consistent with those seen in S. aureus-challenged peritoneal macrophages from CSS 18 mice (which contain A/J chromosome 18 but are otherwise C57BL/6J), but not C57BL/6J mice. These findings suggest that two genes, Tnfaip8 and Seh1l, may contribute to susceptibility to S. aureus in A/J mice, and represent promising candidates for human genetic susceptibility studies.
Resumo:
Alzheimer's disease is a complex and progressive neurodegenerative disease leading to loss of memory, cognitive impairment, and ultimately death. To date, six large-scale genome-wide association studies have been conducted to identify SNPs that influence disease predisposition. These studies have confirmed the well-known APOE epsilon4 risk allele, identified a novel variant that influences disease risk within the APOE epsilon4 population, found a SNP that modifies the age of disease onset, as well as reported the first sex-linked susceptibility variant. Here we report a genome-wide scan of Alzheimer's disease in a set of 331 cases and 368 controls, extending analyses for the first time to include assessments of copy number variation. In this analysis, no new SNPs show genome-wide significance. We also screened for effects of copy number variation, and while nothing was significant, a duplication in CHRNA7 appears interesting enough to warrant further investigation.
Resumo:
PURPOSE: Evaluating genetic susceptibility may clarify effects of known environmental factors and also identify individuals at high risk. We evaluated the association of four insulin-related pathway gene polymorphisms in insulin-like growth factor-1 (IGF-I) (CA)( n ) repeat, insulin-like growth factor-2 (IGF-II) (rs680), insulin-like growth factor-binding protein-3 (IGFBP-3) (rs2854744), and adiponectin (APM1 rs1501299) with colon cancer risk, as well as relationships with circulating IGF-I, IGF-II, IGFBP-3, and C-peptide in a population-based study. METHODS: Participants were African Americans (231 cases and 306 controls) and Whites (297 cases, 530 controls). Consenting subjects provided blood specimens and lifestyle/diet information. Genotyping for all genes except IGF-I was performed by the 5'-exonuclease (Taqman) assay. The IGF-I (CA)(n) repeat was assayed by PCR and fragment analysis. Circulating proteins were measured by enzyme immunoassays. Odds ratios (ORs) and 95 % confidence intervals (CIs) were calculated by logistic regression. RESULTS: The IGF-I (CA)( 19 ) repeat was higher in White controls (50 %) than African American controls (31 %). Whites homozygous for the IGF-I (CA)(19) repeat had a nearly twofold increase in risk of colon cancer (OR = 1.77; 95 % CI = 1.15-2.73), but not African Americans (OR = 0.73, 95 % CI 0.50-1.51). We observed an inverse association between the IGF-II Apa1 A-variant and colon cancer risk (OR = 0.49, 95 % CI 0.28-0.88) in Whites only. Carrying the IGFBP-3 variant alleles was associated with lower IGFBP-3 protein levels, a difference most pronounced in Whites (p-trend <0.05). CONCLUSIONS: These results support an association between insulin pathway-related genes and elevated colon cancer risk in Whites but not in African Americans.
Resumo:
Cardiac beta(2)-adrenergic receptor (beta(2)AR) overexpression is a potential contractile therapy for heart failure. Cardiac contractility was elevated in mice overexpressing beta(2)ARs (TG4s) with no adverse effects under normal conditions. To assess the consequences of beta(2)AR overexpression during ischemia, perfused hearts from TG4 and wild-type mice were subjected to 20-minute ischemia and 40-minute reperfusion. During ischemia, ATP and pH fell lower in TG4 hearts than wild type. Ischemic injury was greater in TG4 hearts, as indicated by lower postischemic recoveries of contractile function, ATP, and phosphocreatine. Because beta(2)ARs, unlike beta(1)ARs, couple to G(i) as well as G(s), we pretreated mice with the G(i) inhibitor pertussis toxin (PTX). PTX treatment increased basal contractility in TG4 hearts and abolished the contractile resistance to isoproterenol. During ischemia, ATP fell lower in TG4+PTX than in TG4 hearts. Recoveries of contractile function and ATP were lower in TG4+PTX than in TG4 hearts. We also studied mice that overexpressed either betaARK1 (TGbetaARK1) or a betaARK1 inhibitor (TGbetaARKct). Recoveries of function, ATP, and phosphocreatine were higher in TGbetaARK1 hearts than in wild-type hearts. Despite basal contractility being elevated in TGbetaARKct hearts to the same level as that of TG4s, ischemic injury was not increased. In summary, beta(2)AR overexpression increased ischemic injury, whereas betaARK1 overexpression was protective. Ischemic injury in the beta(2)AR overexpressors was exacerbated by PTX treatment, implying that it was G(s) not G(i) activity that enhanced injury. Unlike beta(2)AR overexpression, basal contractility was increased by betaARK1 inhibitor expression without increasing ischemic injury, thus implicating a safer potential therapy for heart failure.
Resumo:
Previously we have shown that a functional nonsynonymous single nucleotide polymorphism (rs6318) of the 5HTR2C gene located on the X-chromosome is associated with hypothalamic-pituitary-adrenal axis response to a stress recall task, and with endophenotypes associated with cardiovascular disease (CVD). These findings suggest that individuals carrying the rs6318 Ser23 C allele will be at higher risk for CVD compared to Cys23 G allele carriers. The present study examined allelic variation in rs6318 as a predictor of coronary artery disease (CAD) severity and a composite endpoint of all-cause mortality or myocardial infarction (MI) among Caucasian participants consecutively recruited through the cardiac catheterization laboratory at Duke University Hospital (Durham, NC) as part of the CATHGEN biorepository. Study population consisted of 6,126 Caucasian participants (4,036 [65.9%] males and 2,090 [34.1%] females). A total of 1,769 events occurred (1,544 deaths and 225 MIs; median follow-up time = 5.3 years, interquartile range = 3.3-8.2). Unadjusted Cox time-to-event regression models showed, compared to Cys23 G carriers, males hemizygous for Ser23 C and females homozygous for Ser23C were at increased risk for the composite endpoint of all-cause death or MI: Hazard Ratio (HR) = 1.47, 95% confidence interval (CI) = 1.17, 1.84, p = .0008. Adjusting for age, rs6318 genotype was not related to body mass index, diabetes, hypertension, dyslipidemia, smoking history, number of diseased coronary arteries, or left ventricular ejection fraction in either males or females. After adjustment for these covariates the estimate for the two Ser23 C groups was modestly attenuated, but remained statistically significant: HR = 1.38, 95% CI = 1.10, 1.73, p = .005. These findings suggest that this functional polymorphism of the 5HTR2C gene is associated with increased risk for CVD mortality and morbidity, but this association is apparently not explained by the association of rs6318 with traditional risk factors or conventional markers of atherosclerotic disease.
Resumo:
BACKGROUND: We have previously shown that a functional polymorphism of the UGT2B15 gene (rs1902023) was associated with increased risk of prostate cancer (PC). Novel functional polymorphisms of the UGT2B17 and UGT2B15 genes have been recently characterized by in vitro assays but have not been evaluated in epidemiologic studies. METHODS: Fifteen functional SNPs of the UGT2B17 and UGT2B15 genes, including cis-acting UGT2B gene SNPs, were genotyped in African American and Caucasian men (233 PC cases and 342 controls). Regression models were used to analyze the association between SNPs and PC risk. RESULTS: After adjusting for race, age and BMI, we found that six UGT2B15 SNPs (rs4148269, rs3100, rs9994887, rs13112099, rs7686914 and rs7696472) were associated with an increased risk of PC in log-additive models (p < 0.05). A SNP cis-acting on UGT2B17 and UGT2B15 expression (rs17147338) was also associated with increased risk of prostate cancer (OR = 1.65, 95% CI = 1.00-2.70); while a stronger association among men with high Gleason sum was observed for SNPs rs4148269 and rs3100. CONCLUSIONS: Although small sample size limits inference, we report novel associations between UGT2B15 and UGT2B17 variants and PC risk. These associations with PC risk in men with high Gleason sum, more frequently found in African American men, support the relevance of genetic differences in the androgen metabolism pathway, which could explain, in part, the high incidence of PC among African American men. Larger studies are required.
Resumo:
Bladder cancer is a unique disease process in that clinically significant hemorrhage can occur simultaneously with equally significant aberrant clotting. With hematuria the key presenting symptom of bladder cancer, hemorrhage is generally thought to be a component of the natural history of the disease, and to commonly occur during its treatment. However, as those who regularly treat bladder cancer know, the need to address a predisposition to clotting is also very much part of the treatment paradigm. Physicians must be cognizant of the biochemical changes that confer a propensity for both significant bleeding and clotting occurring simultaneously in their patients. Both of these entities remain important issues, and further study is needed to find ways to mitigate and balance the associated risks. Here, we performed a review of the literature, focusing on the concomitant issues of bleeding and venous thromboembolism in both the pre- and post-operative periods in patients with bladder cancer. We formulated a general management approach with respect to these two processes, and we provide direction for further investigation.
Resumo:
In chimpanzees, most females disperse from the community in which they were born to reproduce in a new community, thereby eliminating the risk of inbreeding with close kin. However, across sites, some females breed in their natal community, raising questions about the flexibility of dispersal, the costs and benefits of different strategies and the mitigation of costs associated with dispersal and integration. In this dissertation I address these questions by combining long-term behavioral data and recent field observations on maturing and young adult females in Gombe National Park with an experimental manipulation of relationship formation in captive apes in the Congo.
To assess the risk of inbreeding for females who do and do not disperse, 129 chimpanzees were genotyped and relatedness between each dyad was calculated. Natal females were more closely related to adult community males than were immigrant females. By examining the parentage of 58 surviving offspring, I found that natal females were not more related to the sires of their offspring than were immigrant females, despite three instances of close inbreeding. The sires of all offspring were less related to the mothers than non-sires regardless of the mother’s residence status. These results suggest that chimpanzees are capable of detecting relatedness and that, even when remaining natal, females can largely avoid, though not eliminate, inbreeding.
Next, I examined whether dispersal was associated with energetic, social, physiological and/or reproductive costs by comparing immigrant (n=10) and natal (n=9) females of similar age using 2358 hours of observational data. Natal and immigrant females did not differ in any energetic metric. Immigrant females received aggression from resident females more frequently than natal females. Immigrants spent less time in social grooming and more time self-grooming than natal females. Immigrant females primarily associated with resident males, had more social partners and lacked close social allies. There was no difference in levels of fecal glucocorticoid metabolites in immigrant and natal females. Immigrant females gave birth 2.5 years later than natal females, though the survival of their first offspring did not differ. These results indicate that immigrant females in Gombe National Park do not face energetic deficits upon transfer, but they do enter a hostile social environment and have a delayed first birth.
Next, I examined whether chimpanzees use condition- and phenotype-dependent cues in making dispersal decisions. I examined the effect of social and environmental conditions present at the time females of known age matured (n=25) on the females’ dispersal decisions. Females were more likely to disperse if they had more male maternal relatives and thus, a high risk of inbreeding. Females with a high ranking mother and multiple maternal female kin tended to disperse less frequently, suggesting that a strong female kin network provides benefits to the maturing daughter. Females were also somewhat less likely to disperse when fewer unrelated males were present in the group. Habitat quality and intrasexual competition did not affect dispersal decisions. Using a larger sample of 62 females observed as adults in Gombe, I also detected an effect of phenotypic differences in personality on the female’s dispersal decisions; extraverted, agreeable and open females were less likely to disperse.
Natural observations show that apes use grooming and play as social currency, but no experimental manipulations have been carried out to measure the effects of these behaviors on relationship formation, an essential component of integration. Thirty chimpanzees and 25 bonobos were given a choice between an unfamiliar human who had recently groomed or played with them over one who did not. Both species showed a preference for the human that had interacted with them, though the effect was driven by males. These results support the idea that grooming and play act as social currency in great apes that can rapidly shape social relationships between unfamiliar individuals. Further investigation is needed to elucidate the use of social currency in female apes.
I conclude that dispersal in female chimpanzees is flexible and the balance of costs and benefits varies for each individual. Females likely take into account social cues present at maturity and their own phenotype in choosing a settlement path and are especially sensitive to the presence of maternal male kin. The primary cost associated with philopatry is inbreeding risk and the primary cost associated with dispersal is delay in the age at first birth, presumably resulting from intense social competition. Finally, apes may strategically make use of affiliative behavior in pursuing particular relationships, something that should be useful in the integration process.