2 resultados para zeolite A

em DRUM (Digital Repository at the University of Maryland)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hemorrhage is the leading cause of preventable death after a traumatic injury. Commercial hemostatic agents exist, but have various disadvantages including high cost, short shelf-lives, or secondary tissue damage. Polymer hydrogels provide a promising platform for the use of both biological and mechanical mechanisms to accelerate natural hemostasis and control hemorrhage. The goal of this work was to develop hydrogel particles composed of chitosan and alginate and loaded with zeolite in order to stop blood loss by targeting multiple hemostatic mechanisms. Several ii particle compositions were synthesized and then characterized through swelling studies, particle sizing, Scanning Electron Microscopy (SEM), and Fourier Transform Infrared Spectroscopy (FTIR). The in vitro interactions of the particles were evaluated through coagulation, degradation, platelet aggregation, and cytotoxicity studies. The results indicate that 4% alginate, 1% chitosan, 4% zeolite-loaded hydrogel beads can significantly reduce time to coagulation and increase platelet aggregation in vitro. Future research can look into the efficacy of these particles in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water scarcity is a global issue that has already affected every continent. Membrane technology is considered as one of the most promising candidates for resolving this worsening issue. Among all the membrane processes, the emerging forward osmosis (FO) membrane process is osmotically-driven and has unique advantages compared with other traditional pressure-driven membrane processes. One of the major challenges to advancing the FO membrane process is the lack of a suitable membrane. Polyelectrolyte thin film prepared via layer-by-layer (LbL) technique has demonstrated its excellent performance in many applications including electronics, optics, sensors, etc. Recent studies have revealed the potential of polyelectrolyte thin films in acting as the active separation layer of FO membranes, but significant efforts are still needed to improve the membrane performance and understand the transport mechanisms. This dissertation introduces a novel approach to prepare a zeolite-embedded polyelectrolyte composite membrane for enhanced FO performance. This membrane takes advantages of the versatile LbL process to unprecedentedly incorporate high loading of zeolite nanoparticles, which are anticipated to facilitate water transport due to the uniquely interconnected structure of zeolites. Major topics discussed in this dissertation include: (1) the synthesis and evaluation of the polyelectrolyte-zeolite composite FO membrane, (2) the examination of the fouling resistance to identify its technical limitations, (3) the demonstration of the membrane regenerability as an effective strategy for membrane fouling control, and (4) the investigation of crosslinking effects on the membrane performance to elucidate the transport mechanisms involved in the zeolite-embedded polyelectrolyte membranes. Comparative studies have been made between polyelectrolyte membranes with and without zeolite incorporation. The findings suggest that the zeolite-embedded membrane, although slightly more susceptible to silica scaling, has demonstrated enhanced water flux and separation capability, good resistance to organic fouling, and complete regenerability for fouling control. Additionally, the embedded zeolite nanoparticles are proved to be able to create fast pathways for water transport. Overall, this work provides a novel strategy to create zeolite-polymer composite membranes with enhanced separation performance and unique fouling mitigation properties.