2 resultados para wind farm modeling

em DRUM (Digital Repository at the University of Maryland)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flexible cylindrical structures subjected to wind loading experience vibrations from periodic shedding of vortices in their wake. Vibrations become excessive when the natural frequencies of the cylinder coincide with the vortex shedding frequency. In this study, cylinder vibrations are transmitted to a beam inside the structure via dynamic magnifier system. This system amplifies the strain experienced by piezoelectric patches bonded to the beam to maximize the conversion from vibrational energy into electrical energy. Realworld applicability is tested using a wind tunnel to create vortex shedding and comparing the results to finite element modeling that shows the structural vibrational modes. A crucial part of this study is conditioning and storing the harvested energy, focusing on theoretical modeling, design parameter optimization, and experimental validation. The developed system is helpful in designing wind-induced energy harvesters to meet the necessity for novel energy resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Common building energy modeling approaches do not account for the influence of surrounding neighborhood on the energy consumption patterns. This thesis develops a framework to quantify the neighborhood impact on a building energy consumption based on the local wind flow. The airflow in the neighborhood is predicted using Computational Fluid Dynamics (CFD) in eight principal wind directions. The developed framework in this study benefits from wind multipliers to adjust the wind velocity encountering the target building. The input weather data transfers the adjusted wind velocities to the building energy model. In a case study, the CFD method is validated by comparing with on-site temperature measurements, and the building energy model is calibrated using utilities data. A comparison between using the adjusted and original weather data shows that the building energy consumption and air system heat gain decreased by 5% and 37%, respectively, while the cooling gain increased by 4% annually.